Yuzhou Wei , Giorgia Disarò , Wenjie Liu , Jian Sun , Maria Elena Valcher , Gang Wang
{"title":"Distributed data-driven unknown-input observers","authors":"Yuzhou Wei , Giorgia Disarò , Wenjie Liu , Jian Sun , Maria Elena Valcher , Gang Wang","doi":"10.1016/j.automatica.2025.112614","DOIUrl":null,"url":null,"abstract":"<div><div>Unknown inputs related to, e.g., sensor aging, modeling errors, or device bias, represent a major concern in wireless sensor networks, as they degrade the state estimation performance. To improve the performance, unknown-input observers (UIOs) have been proposed. Most of the results available to design UIOs are based on explicit system models, which can be difficult or impossible to obtain in real-world applications. Data-driven techniques, on the other hand, have become a viable alternative for the design and analysis of unknown systems using only data. In this context, a novel data-driven distributed unknown-input observer (D-DUIO) for unknown continuous-time linear time-invariant (LTI) systems is developed, which requires solely some data collected offline, without any prior knowledge of the system matrices. In the paper, first, a model-based approach to the design of a DUIO is presented. A sufficient condition for the existence of such a DUIO is recalled, and a new one is proposed, that is prone to a data-driven adaptation. Moving to a data-driven approach, it is shown that under suitable assumptions on the input/output/state data collected from the continuous-time system, it is possible to both claim the existence of a D-DUIO and to derive its matrices in terms of the matrices of pre-collected data. Finally, the efficacy of the D-DUIO is illustrated by means of numerical examples.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"183 ","pages":"Article 112614"},"PeriodicalIF":5.9000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109825005096","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Unknown inputs related to, e.g., sensor aging, modeling errors, or device bias, represent a major concern in wireless sensor networks, as they degrade the state estimation performance. To improve the performance, unknown-input observers (UIOs) have been proposed. Most of the results available to design UIOs are based on explicit system models, which can be difficult or impossible to obtain in real-world applications. Data-driven techniques, on the other hand, have become a viable alternative for the design and analysis of unknown systems using only data. In this context, a novel data-driven distributed unknown-input observer (D-DUIO) for unknown continuous-time linear time-invariant (LTI) systems is developed, which requires solely some data collected offline, without any prior knowledge of the system matrices. In the paper, first, a model-based approach to the design of a DUIO is presented. A sufficient condition for the existence of such a DUIO is recalled, and a new one is proposed, that is prone to a data-driven adaptation. Moving to a data-driven approach, it is shown that under suitable assumptions on the input/output/state data collected from the continuous-time system, it is possible to both claim the existence of a D-DUIO and to derive its matrices in terms of the matrices of pre-collected data. Finally, the efficacy of the D-DUIO is illustrated by means of numerical examples.
期刊介绍:
Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field.
After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience.
Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.