{"title":"Sector stabilization criterion of a novel nonlinear flexible marine riser coupled system","authors":"Yi Cheng , Xin Wang , Yuhu Wu , Bao-Zhu Guo","doi":"10.1016/j.automatica.2025.112618","DOIUrl":null,"url":null,"abstract":"<div><div>This paper establishes a sector stabilization criterion for a nonlinear flexible marine riser system that incorporates lateral and transverse coupling vibrations, derived from Hamilton’s principle. This criterion, grounded in the sector-bounded condition, encompasses a wide range of linear and nonlinear feedback control laws applied to the transverse and lateral directions at the top boundary of the flexible marine riser, respectively. In the analysis, the nonlinear semigroup theory is utilized to establish the well-posedness of the resulting closed-loop coupled system. Notably, the solution demonstrates continuous dependence on the initial conditions. Furthermore, the exponential stability of the closed-loop coupled system is achieved by employing a generalized Gronwall-type integral inequality and the integral multiplier method, which involves the innovative development of an energy-like functional. To demonstrate the effectiveness of the proposed controls, numerical simulations utilizing the finite element method are presented.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"183 ","pages":"Article 112618"},"PeriodicalIF":5.9000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000510982500514X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper establishes a sector stabilization criterion for a nonlinear flexible marine riser system that incorporates lateral and transverse coupling vibrations, derived from Hamilton’s principle. This criterion, grounded in the sector-bounded condition, encompasses a wide range of linear and nonlinear feedback control laws applied to the transverse and lateral directions at the top boundary of the flexible marine riser, respectively. In the analysis, the nonlinear semigroup theory is utilized to establish the well-posedness of the resulting closed-loop coupled system. Notably, the solution demonstrates continuous dependence on the initial conditions. Furthermore, the exponential stability of the closed-loop coupled system is achieved by employing a generalized Gronwall-type integral inequality and the integral multiplier method, which involves the innovative development of an energy-like functional. To demonstrate the effectiveness of the proposed controls, numerical simulations utilizing the finite element method are presented.
期刊介绍:
Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field.
After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience.
Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.