Generalized weakly-Weyl Finsler metrics: A generalized approach to Sakaguchi's theorem

IF 0.7 4区 数学 Q3 MATHEMATICS
Nasrin Sadeghzadeh, Meshkat Yavari
{"title":"Generalized weakly-Weyl Finsler metrics: A generalized approach to Sakaguchi's theorem","authors":"Nasrin Sadeghzadeh,&nbsp;Meshkat Yavari","doi":"10.1016/j.difgeo.2025.102297","DOIUrl":null,"url":null,"abstract":"<div><div>The development of projective invariant Weyl metrics in this paper offers a fresh perspective, as we establish the characteristics of both weakly-Weyl and generalized weakly-Weyl Finsler metrics. We thoroughly examine the connections between these metrics and various projective invariants, highlighting their significance in the context of generalized Sakaguchi's Theorem, which states that every Finsler metric of scalar flag curvature is a GDW-metric. Additionally, we introduce several illustrative examples pertaining to this new class of projective invariant Finsler metrics. Specifically, we explore the category of weakly-Weyl spherically symmetric Finsler metrics in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. Importantly, we demonstrate that the two classes weakly-Weyl and <em>W</em>-quadratic spherically symmetric Finsler metrics in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> are equivalent.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"101 ","pages":"Article 102297"},"PeriodicalIF":0.7000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224525000725","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The development of projective invariant Weyl metrics in this paper offers a fresh perspective, as we establish the characteristics of both weakly-Weyl and generalized weakly-Weyl Finsler metrics. We thoroughly examine the connections between these metrics and various projective invariants, highlighting their significance in the context of generalized Sakaguchi's Theorem, which states that every Finsler metric of scalar flag curvature is a GDW-metric. Additionally, we introduce several illustrative examples pertaining to this new class of projective invariant Finsler metrics. Specifically, we explore the category of weakly-Weyl spherically symmetric Finsler metrics in Rn. Importantly, we demonstrate that the two classes weakly-Weyl and W-quadratic spherically symmetric Finsler metrics in Rn are equivalent.
广义弱weyl - Finsler度量:Sakaguchi定理的广义方法
本文的发展提供了一个新的视角,因为我们建立了弱Weyl和广义弱Weyl芬斯勒度量的特征。我们深入研究了这些度量与各种投影不变量之间的联系,强调了它们在广义Sakaguchi定理背景下的意义,该定理指出标量标志曲率的每个Finsler度量都是gdw度量。此外,我们还介绍了有关这类新的射影不变芬斯勒度量的几个说明性例子。具体来说,我们探讨了Rn中弱weyl球对称Finsler度量的范畴。重要的是,我们证明了Rn中的两类弱weyl和w二次球对称Finsler度量是等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信