{"title":"Non-naturally reductive Einstein metrics on SO(n)","authors":"Ming Wu , Ju Tan , Na Xu","doi":"10.1016/j.difgeo.2025.102294","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we obtain that the compact simple Lie group <span><math><mi>S</mi><mi>O</mi><mo>(</mo><mn>4</mn><mi>k</mi><mo>+</mo><mn>3</mn><mo>)</mo><mo>(</mo><mi>k</mi><mo>≥</mo><mn>8</mn><mo>)</mo></math></span> admits at least two new non-naturally reductive <span><math><mi>A</mi><mi>d</mi><mo>(</mo><mi>S</mi><mi>O</mi><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>×</mo><mi>S</mi><mi>O</mi><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>×</mo><mi>S</mi><mi>O</mi><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>×</mo><mi>S</mi><mi>O</mi><mo>(</mo><mi>k</mi><mo>)</mo><mo>)</mo></math></span>-invariant Einstein metrics, and the compact simple Lie group <span><math><mi>S</mi><mi>O</mi><mo>(</mo><mn>4</mn><mi>k</mi><mo>+</mo><mn>6</mn><mo>)</mo><mo>(</mo><mi>k</mi><mo>≥</mo><mn>11</mn><mo>)</mo></math></span> admits at least two new non-naturally reductive <span><math><mi>A</mi><mi>d</mi><mo>(</mo><mi>S</mi><mi>O</mi><mo>(</mo><mi>k</mi><mo>+</mo><mn>2</mn><mo>)</mo><mo>×</mo><mi>S</mi><mi>O</mi><mo>(</mo><mi>k</mi><mo>+</mo><mn>2</mn><mo>)</mo><mo>×</mo><mi>S</mi><mi>O</mi><mo>(</mo><mi>k</mi><mo>+</mo><mn>2</mn><mo>)</mo><mo>×</mo><mi>S</mi><mi>O</mi><mo>(</mo><mi>k</mi><mo>)</mo><mo>)</mo></math></span>-invariant Einstein metrics. Furthermore, we explore the isometry problem for these Einstein metrics. Finally, we prove that there are at least two families of non-naturally reductive invariant Einstein-Randers metrics on <span><math><mi>S</mi><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>(</mo><mi>n</mi><mo>≥</mo><mn>35</mn><mo>)</mo></math></span> and <span><math><mi>S</mi><mi>O</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>(</mo><mi>n</mi><mo>≥</mo><mn>50</mn><mo>)</mo></math></span> respectively.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"101 ","pages":"Article 102294"},"PeriodicalIF":0.7000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224525000695","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we obtain that the compact simple Lie group admits at least two new non-naturally reductive -invariant Einstein metrics, and the compact simple Lie group admits at least two new non-naturally reductive -invariant Einstein metrics. Furthermore, we explore the isometry problem for these Einstein metrics. Finally, we prove that there are at least two families of non-naturally reductive invariant Einstein-Randers metrics on and respectively.
期刊介绍:
Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.