Atomically dispersed Fe-Co in electrospun SiC fiber matrix for enhanced electromagnetic wave absorption and desirable thermal stability

IF 6.2 2区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS
Chen Tang , Mengying Liu , Bowen Han , Jiayi Ye , Lei Dong , Xiaohang Yang , Jiaju Meng , Weiyan Wang , Zhaowei Liu , Kang Zhao , Yufei Tang
{"title":"Atomically dispersed Fe-Co in electrospun SiC fiber matrix for enhanced electromagnetic wave absorption and desirable thermal stability","authors":"Chen Tang ,&nbsp;Mengying Liu ,&nbsp;Bowen Han ,&nbsp;Jiayi Ye ,&nbsp;Lei Dong ,&nbsp;Xiaohang Yang ,&nbsp;Jiaju Meng ,&nbsp;Weiyan Wang ,&nbsp;Zhaowei Liu ,&nbsp;Kang Zhao ,&nbsp;Yufei Tang","doi":"10.1016/j.jeurceramsoc.2025.117821","DOIUrl":null,"url":null,"abstract":"<div><div>The aerospace industry urgently demands high-performance electromagnetic wave absorbing materials that maintain stability under extreme temperatures. In this work, Fe-Co co-doped SiC nanofibers were developed via precision electrospinning and controlled pyrolysis. An atomic-scale dispersion of Fe and Co was achieved through a metal-polymer coordination strategy. These dopants function as active sites that promote phase nucleation, while also serving as electron donors to enhance polarization loss. Subsequent tuning of doping concentration enables synergy among conductive loss, polarization loss and magnetic loss. The optimized nanofiber exhibits outstanding performance, demonstrating an RLmin of −58.49 dB at 14.88 GHz with a 1.25 mm thickness, as well as a maximum EAB of 4.77 GHz. Remarkably, the material also demonstrates desirable thermal stability in argon atmospheres up to 1200 °C, even after oxidation at 800 °C for 30 min, it retains an RLmin of −26.35 dB and EAB of 3.04 GHz. This work establishes a new paradigm in doping-induced phase engineering, providing transformative strategy for developing next-generation extreme-environment electromagnetic wave absorbers.</div></div>","PeriodicalId":17408,"journal":{"name":"Journal of The European Ceramic Society","volume":"46 2","pages":"Article 117821"},"PeriodicalIF":6.2000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The European Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955221925006429","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The aerospace industry urgently demands high-performance electromagnetic wave absorbing materials that maintain stability under extreme temperatures. In this work, Fe-Co co-doped SiC nanofibers were developed via precision electrospinning and controlled pyrolysis. An atomic-scale dispersion of Fe and Co was achieved through a metal-polymer coordination strategy. These dopants function as active sites that promote phase nucleation, while also serving as electron donors to enhance polarization loss. Subsequent tuning of doping concentration enables synergy among conductive loss, polarization loss and magnetic loss. The optimized nanofiber exhibits outstanding performance, demonstrating an RLmin of −58.49 dB at 14.88 GHz with a 1.25 mm thickness, as well as a maximum EAB of 4.77 GHz. Remarkably, the material also demonstrates desirable thermal stability in argon atmospheres up to 1200 °C, even after oxidation at 800 °C for 30 min, it retains an RLmin of −26.35 dB and EAB of 3.04 GHz. This work establishes a new paradigm in doping-induced phase engineering, providing transformative strategy for developing next-generation extreme-environment electromagnetic wave absorbers.
原子分散的Fe-Co在静电纺SiC纤维基体中增强电磁波吸收和理想的热稳定性
航空航天工业迫切需要在极端温度下保持稳定的高性能电磁波吸收材料。本文通过精密静电纺丝和可控热解制备了Fe-Co共掺杂SiC纳米纤维。通过金属-聚合物配位策略实现了Fe和Co的原子级分散。这些掺杂剂作为促进相成核的活性位点,同时也作为电子给体增加极化损失。随后调整掺杂浓度,使导电损耗、极化损耗和磁损耗协同作用。优化后的纳米纤维表现出优异的性能,在14.88 GHz下,厚度为1.25 mm的RLmin为−58.49 dB,最大EAB为4.77 GHz。值得注意的是,该材料在高达1200 °C的氩气环境中也表现出良好的热稳定性,即使在800 °C氧化30 分钟后,其RLmin仍保持- 26.35 dB和3.04 GHz的EAB。这项工作建立了掺杂诱导相位工程的新范式,为开发下一代极端环境电磁波吸收器提供了变革策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of The European Ceramic Society
Journal of The European Ceramic Society 工程技术-材料科学:硅酸盐
CiteScore
10.70
自引率
12.30%
发文量
863
审稿时长
35 days
期刊介绍: The Journal of the European Ceramic Society publishes the results of original research and reviews relating to ceramic materials. Papers of either an experimental or theoretical character will be welcomed on a fully international basis. The emphasis is on novel generic science concerning the relationships between processing, microstructure and properties of polycrystalline ceramics consolidated at high temperature. Papers may relate to any of the conventional categories of ceramic: structural, functional, traditional or composite. The central objective is to sustain a high standard of research quality by means of appropriate reviewing procedures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信