f(Q,Lm) gravity, and its cosmological implications

IF 6.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Ayush Hazarika , Simran Arora , P.K. Sahoo , Tiberiu Harko
{"title":"f(Q,Lm) gravity, and its cosmological implications","authors":"Ayush Hazarika ,&nbsp;Simran Arora ,&nbsp;P.K. Sahoo ,&nbsp;Tiberiu Harko","doi":"10.1016/j.dark.2025.102092","DOIUrl":null,"url":null,"abstract":"<div><div>Symmetric teleparallel gravity and its <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> extensions have emerged as promising alternatives to General Relativity (GR), yet the role of explicit geometry–matter couplings remains largely unexplored. In this work, we address this gap by proposing a generalized <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> theory, where the gravitational Lagrangian density depends on both the non-metricity scalar <span><math><mi>Q</mi></math></span> and the matter Lagrangian <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>. This formulation naturally includes Coincident GR and the Symmetric Teleparallel Equivalent of GR as special cases. Working in the metric formalism, we derive the corresponding field equations, which generalize those of the standard <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> gravity, and obtain the modified Klein–Gordon equation for scenarios involving scalar fields. The cosmological implications of the theory are explored in the context of the Friedmann–Lemaître–Robertson–Walker (FLRW) universe. As a first step, we obtain the modified Friedmann equations for <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> gravity in full generality. We then investigate specific cosmological models arising from both linear and non-linear choices of <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>Q</mi><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, performing detailed comparisons with the standard <span><math><mi>Λ</mi></math></span>CDM scenario and examining their observational consequences.</div></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"50 ","pages":"Article 102092"},"PeriodicalIF":6.4000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Dark Universe","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212686425002857","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Symmetric teleparallel gravity and its f(Q) extensions have emerged as promising alternatives to General Relativity (GR), yet the role of explicit geometry–matter couplings remains largely unexplored. In this work, we address this gap by proposing a generalized f(Q,Lm) theory, where the gravitational Lagrangian density depends on both the non-metricity scalar Q and the matter Lagrangian Lm. This formulation naturally includes Coincident GR and the Symmetric Teleparallel Equivalent of GR as special cases. Working in the metric formalism, we derive the corresponding field equations, which generalize those of the standard f(Q) gravity, and obtain the modified Klein–Gordon equation for scenarios involving scalar fields. The cosmological implications of the theory are explored in the context of the Friedmann–Lemaître–Robertson–Walker (FLRW) universe. As a first step, we obtain the modified Friedmann equations for f(Q,Lm) gravity in full generality. We then investigate specific cosmological models arising from both linear and non-linear choices of f(Q,Lm), performing detailed comparisons with the standard ΛCDM scenario and examining their observational consequences.
f(Q,Lm)引力及其宇宙学意义
对称遥平行引力及其f(Q)扩展已成为广义相对论(GR)的有希望的替代品,但显式几何-物质耦合的作用仍未得到充分探索。在这项工作中,我们通过提出一个广义的f(Q,Lm)理论来解决这一差距,其中引力拉格朗日密度取决于非度规标量Q和物质拉格朗日Lm。这个公式很自然地包括了同步广义相对论和广义相对论的对称遥平行等价。在度量形式下,我们推导了相应的场方程,推广了标准f(Q)引力的场方程,得到了涉及标量场的修正Klein-Gordon方程。该理论的宇宙学含义是在弗里德曼-莱马特-罗伯逊-沃克(FLRW)宇宙的背景下探索的。作为第一步,我们得到了f(Q,Lm)重力的完全一般的修正弗里德曼方程。然后,我们研究了由f(Q,Lm)的线性和非线性选择引起的特定宇宙学模型,与标准ΛCDM情景进行了详细的比较,并检查了它们的观测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics of the Dark Universe
Physics of the Dark Universe ASTRONOMY & ASTROPHYSICS-
CiteScore
9.60
自引率
7.30%
发文量
118
审稿时长
61 days
期刊介绍: Physics of the Dark Universe is an innovative online-only journal that offers rapid publication of peer-reviewed, original research articles considered of high scientific impact. The journal is focused on the understanding of Dark Matter, Dark Energy, Early Universe, gravitational waves and neutrinos, covering all theoretical, experimental and phenomenological aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信