{"title":"Nonlinear predictive regulation of an integrated green hydrogen and ammonia production system under time-varying renewable energy supply","authors":"Thiago Oliveira Cabral , Davood B. Pourkargar","doi":"10.1016/j.compchemeng.2025.109376","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents a comprehensive model for a modular system that integrates green hydrogen and ammonia production with renewable energy generation. The chemical module comprises a high-temperature water electrolyzer for hydrogen production and an ammonia synthesis reactor. When solving the models over time, the system exhibits complex yet predictable dynamics, with the chemical module having a much faster response than other components. Under typical weather conditions, the renewable energy module generates over 50 kW for most of the day, partially meeting the chemical module’s energy demands. Nonlinear model predictive control (NMPC) is employed to manage the operation of the chemical module in response to variable renewable energy availability. The proposed NMPC framework determines the optimal supplemental energy required from the conventional energy grid to sustain the process. When renewable energy availability is high, the controller minimizes grid energy usage, maintaining the chemical module near its desired operating conditions with minimal reliance on external sources. Conversely, during low renewable energy availability periods, the controller increases grid energy acquisition to ensure stable system operation, demonstrating a greater dependence on external energy supplies.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"204 ","pages":"Article 109376"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425003795","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents a comprehensive model for a modular system that integrates green hydrogen and ammonia production with renewable energy generation. The chemical module comprises a high-temperature water electrolyzer for hydrogen production and an ammonia synthesis reactor. When solving the models over time, the system exhibits complex yet predictable dynamics, with the chemical module having a much faster response than other components. Under typical weather conditions, the renewable energy module generates over 50 kW for most of the day, partially meeting the chemical module’s energy demands. Nonlinear model predictive control (NMPC) is employed to manage the operation of the chemical module in response to variable renewable energy availability. The proposed NMPC framework determines the optimal supplemental energy required from the conventional energy grid to sustain the process. When renewable energy availability is high, the controller minimizes grid energy usage, maintaining the chemical module near its desired operating conditions with minimal reliance on external sources. Conversely, during low renewable energy availability periods, the controller increases grid energy acquisition to ensure stable system operation, demonstrating a greater dependence on external energy supplies.
期刊介绍:
Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.