{"title":"Risk estimate under a time-varying autoregressive model for data-driven reproduction number estimation","authors":"Barbara Pascal , Samuel Vaiter","doi":"10.1016/j.sigpro.2025.110246","DOIUrl":null,"url":null,"abstract":"<div><div>COVID-19 pandemic has brought to the fore epidemiological models which, though describing a wealth of behaviors, have previously received little attention in signal processing literature. In this work, a generalized time-varying autoregressive model is considered, encompassing, but not reducing to, a state-of-the-art model of viral epidemics propagation. The time-varying parameter of this model is estimated via the minimization of a penalized likelihood estimator. A major challenge is that the estimation accuracy strongly depends on hyperparameters fine-tuning. Without available ground truth, hyperparameters are selected by minimizing specifically designed data-driven oracles, used as proxy for the estimation error. Focusing on the time-varying autoregressive Poisson model, Stein’s Unbiased Risk Estimate formalism is generalized to construct asymptotically unbiased risk estimators based on the derivation of an original autoregressive counterpart of Stein’s lemma. The accuracy of these oracles and of the resulting estimates are assessed through intensive Monte Carlo simulations on synthetic data. Then, elaborating on recent epidemiological models, a novel weekly scaled Poisson model is proposed, better accounting for intrinsic variability of the contaminations while being robust to reporting errors. Finally, the data-driven procedure is particularized to the estimation of COVID-19 reproduction number from weekly infection counts demonstrating its ability to tackle real-world applications.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"239 ","pages":"Article 110246"},"PeriodicalIF":3.6000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168425003603","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
COVID-19 pandemic has brought to the fore epidemiological models which, though describing a wealth of behaviors, have previously received little attention in signal processing literature. In this work, a generalized time-varying autoregressive model is considered, encompassing, but not reducing to, a state-of-the-art model of viral epidemics propagation. The time-varying parameter of this model is estimated via the minimization of a penalized likelihood estimator. A major challenge is that the estimation accuracy strongly depends on hyperparameters fine-tuning. Without available ground truth, hyperparameters are selected by minimizing specifically designed data-driven oracles, used as proxy for the estimation error. Focusing on the time-varying autoregressive Poisson model, Stein’s Unbiased Risk Estimate formalism is generalized to construct asymptotically unbiased risk estimators based on the derivation of an original autoregressive counterpart of Stein’s lemma. The accuracy of these oracles and of the resulting estimates are assessed through intensive Monte Carlo simulations on synthetic data. Then, elaborating on recent epidemiological models, a novel weekly scaled Poisson model is proposed, better accounting for intrinsic variability of the contaminations while being robust to reporting errors. Finally, the data-driven procedure is particularized to the estimation of COVID-19 reproduction number from weekly infection counts demonstrating its ability to tackle real-world applications.
期刊介绍:
Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing.
Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.