Optimization of catalyst composition and performance for PEM fuel cells: A data-driven approach

Pramoth Varsan Madhavan , Xin Zeng , Samaneh Shahgaldi , Sushanta K. Mitra , Xianguo Li
{"title":"Optimization of catalyst composition and performance for PEM fuel cells: A data-driven approach","authors":"Pramoth Varsan Madhavan ,&nbsp;Xin Zeng ,&nbsp;Samaneh Shahgaldi ,&nbsp;Sushanta K. Mitra ,&nbsp;Xianguo Li","doi":"10.1016/j.aichem.2025.100095","DOIUrl":null,"url":null,"abstract":"<div><div>Transportation’s rising negative environmental impacts and energy demands highlight the urgent need for clean alternative power sources such as proton exchange membrane (PEM) fuel cells. However, the high cost of platinum catalysts hinders its commercialization, making the development of low-platinum, high-performance catalysts essential for achieving net-zero targets. This study employs a data-driven machine learning approach to optimize the oxygen reduction reaction (ORR) catalyst composition and predict its long-term performance using extreme gradient boosting (XGB), artificial neural networks (ANN), and genetic algorithm (GA). Linear sweep voltammetry (LSV) data is collected for three distinct catalyst compositions and divided into separate datasets. Data is preprocessed and model hyperparameters are fine-tuned to enhance model accuracy. XGB models trained on these datasets accurately predicted LSV polarization plots for unseen data, as evidenced by R<sup>2</sup> values &gt; 0.99. To further optimize ORR catalyst design, an ANN model trained on data from three different catalyst compositions is integrated with a genetic algorithm. This predictive framework effectively identified optimal catalyst composition by maximizing the mass activity of the catalyst. Experimental validation of this optimized composition yielded strong agreement with predicted LSV current values, confirming the reliability of the ANN-GA approach. This research underscores the potential of machine learning-based predictive frameworks to accelerate the development of advanced ORR catalysts for PEM fuel cells.</div></div>","PeriodicalId":72302,"journal":{"name":"Artificial intelligence chemistry","volume":"3 2","pages":"Article 100095"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949747725000120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Transportation’s rising negative environmental impacts and energy demands highlight the urgent need for clean alternative power sources such as proton exchange membrane (PEM) fuel cells. However, the high cost of platinum catalysts hinders its commercialization, making the development of low-platinum, high-performance catalysts essential for achieving net-zero targets. This study employs a data-driven machine learning approach to optimize the oxygen reduction reaction (ORR) catalyst composition and predict its long-term performance using extreme gradient boosting (XGB), artificial neural networks (ANN), and genetic algorithm (GA). Linear sweep voltammetry (LSV) data is collected for three distinct catalyst compositions and divided into separate datasets. Data is preprocessed and model hyperparameters are fine-tuned to enhance model accuracy. XGB models trained on these datasets accurately predicted LSV polarization plots for unseen data, as evidenced by R2 values > 0.99. To further optimize ORR catalyst design, an ANN model trained on data from three different catalyst compositions is integrated with a genetic algorithm. This predictive framework effectively identified optimal catalyst composition by maximizing the mass activity of the catalyst. Experimental validation of this optimized composition yielded strong agreement with predicted LSV current values, confirming the reliability of the ANN-GA approach. This research underscores the potential of machine learning-based predictive frameworks to accelerate the development of advanced ORR catalysts for PEM fuel cells.
PEM燃料电池催化剂组成和性能的优化:数据驱动的方法
交通运输对环境的负面影响和能源需求的增加凸显了对质子交换膜(PEM)燃料电池等清洁替代能源的迫切需求。然而,铂催化剂的高成本阻碍了其商业化,因此开发低铂、高性能的催化剂对于实现净零目标至关重要。本研究采用数据驱动的机器学习方法优化氧还原反应(ORR)催化剂组成,并利用极限梯度增强(XGB)、人工神经网络(ANN)和遗传算法(GA)预测其长期性能。线性扫描伏安法(LSV)数据收集了三种不同的催化剂组成,并分为单独的数据集。对数据进行预处理,对模型超参数进行微调,提高模型精度。在这些数据集上训练的XGB模型准确地预测了未见数据的LSV极化图,R2值>; 0.99证明了这一点。为了进一步优化ORR催化剂设计,将基于三种不同催化剂组成数据的人工神经网络模型与遗传算法相结合。该预测框架通过最大化催化剂的质量活性有效地确定了最佳催化剂组成。该优化组合的实验验证结果与预测的LSV电流值非常吻合,证实了ANN-GA方法的可靠性。这项研究强调了基于机器学习的预测框架在加速PEM燃料电池先进ORR催化剂开发方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial intelligence chemistry
Artificial intelligence chemistry Chemistry (General)
自引率
0.00%
发文量
0
审稿时长
21 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信