Synergistic Redox Modulation in Hollow Mesoporous Frameworks for High-Performance Symmetric and Asymmetric Supercapacitors

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Kajal Panchal, , , Kritika S. Sharma, , , Naresh Rajpurohit, , and , Dinesh Kumar*, 
{"title":"Synergistic Redox Modulation in Hollow Mesoporous Frameworks for High-Performance Symmetric and Asymmetric Supercapacitors","authors":"Kajal Panchal,&nbsp;, ,&nbsp;Kritika S. Sharma,&nbsp;, ,&nbsp;Naresh Rajpurohit,&nbsp;, and ,&nbsp;Dinesh Kumar*,&nbsp;","doi":"10.1021/acsaem.5c01931","DOIUrl":null,"url":null,"abstract":"<p >Transition metal vanadates (TMVs) are promising candidates for high-performance supercapacitor electrode materials owing to their rich redox chemistry, synergistic interactions and cost-effectiveness. However, their practical application is still limited by poor intrinsic conductivity, sluggish ion transport, restricted accessibility of redox-active sites, and structural instability, which collectively hinder the simultaneous attainment of high energy density and long-cycle-life.Herein, an approach based on the “mesopore-confined synergistic redox modulation” is proposed to concurrently enhance conductivity, increase the density of accessible redox-active sites, and improve structural stability. This is achieved by synthesizing a cerium-incorporated cobalt vanadate (CVO@3Ce) hollow mesoporous structure via a glycerol-assisted soft template method. The resulting material, when employed in both aqueous symmetric supercapacitors (ASS) and asymmetric supercapacitors (AAS), delivers energy densities of 34.72 and 47.77 Wh kg<sup>–1</sup>, respectively, with capacitance retention of 75.08% (ASS) and 81.20% (AAS) after 10,000 cycles. This work demonstrates an effective strategy for designing high-energy, long-cycle-life electrodematerials for high-performance supercapacitors.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 18","pages":"13561–13575"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c01931","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Transition metal vanadates (TMVs) are promising candidates for high-performance supercapacitor electrode materials owing to their rich redox chemistry, synergistic interactions and cost-effectiveness. However, their practical application is still limited by poor intrinsic conductivity, sluggish ion transport, restricted accessibility of redox-active sites, and structural instability, which collectively hinder the simultaneous attainment of high energy density and long-cycle-life.Herein, an approach based on the “mesopore-confined synergistic redox modulation” is proposed to concurrently enhance conductivity, increase the density of accessible redox-active sites, and improve structural stability. This is achieved by synthesizing a cerium-incorporated cobalt vanadate (CVO@3Ce) hollow mesoporous structure via a glycerol-assisted soft template method. The resulting material, when employed in both aqueous symmetric supercapacitors (ASS) and asymmetric supercapacitors (AAS), delivers energy densities of 34.72 and 47.77 Wh kg–1, respectively, with capacitance retention of 75.08% (ASS) and 81.20% (AAS) after 10,000 cycles. This work demonstrates an effective strategy for designing high-energy, long-cycle-life electrodematerials for high-performance supercapacitors.

Abstract Image

高性能对称和非对称超级电容器中空介孔结构中的协同氧化还原调制
过渡金属钒酸盐(TMVs)由于其丰富的氧化还原化学性质、协同作用和成本效益而成为高性能超级电容器电极材料的有希望的候选者。然而,它们的实际应用仍然受到固有电导率差、离子传输缓慢、氧化还原活性位点的可及性受限以及结构不稳定等因素的限制,这些因素共同阻碍了高能量密度和长循环寿命的同时实现。本文提出了一种基于“介孔限制的协同氧化还原调制”的方法,可以同时提高电导率,增加可达氧化还原活性位点的密度,提高结构稳定性。这是通过甘油辅助软模板法合成铈掺入钒酸钴(CVO@3Ce)中空介孔结构来实现的。该材料应用于水相对称超级电容器(ASS)和非对称超级电容器(AAS)时,能量密度分别为34.72和47.77 Wh kg-1,循环10000次后电容保持率分别为75.08%和81.20%。这项工作为高性能超级电容器设计高能量、长循环寿命电极材料提供了一种有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信