Modulation of Zn2+ Solvation Structure and Deposition Behavior to Achieve High-Performance Zn Anodes

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Ge Xue, , , Haifeng Bian, , , Biao Wang, , , Qing Zhou, , , Shunshun Jia, , , Yujie Ma, , , Jian Gu, , and , Xiangkang Meng*, 
{"title":"Modulation of Zn2+ Solvation Structure and Deposition Behavior to Achieve High-Performance Zn Anodes","authors":"Ge Xue,&nbsp;, ,&nbsp;Haifeng Bian,&nbsp;, ,&nbsp;Biao Wang,&nbsp;, ,&nbsp;Qing Zhou,&nbsp;, ,&nbsp;Shunshun Jia,&nbsp;, ,&nbsp;Yujie Ma,&nbsp;, ,&nbsp;Jian Gu,&nbsp;, and ,&nbsp;Xiangkang Meng*,&nbsp;","doi":"10.1021/acsaem.5c01994","DOIUrl":null,"url":null,"abstract":"<p >Aqueous zinc-ion batteries (AZIBs) have gained wide attention as a promising next-generation energy storage solution, owing to their inherent safety, eco-friendliness, and exceptional volumetric capacity (5855 mAh cm<sup>–3</sup>). However, the severe dendrite formation and side reactions of the Zn anode have impeded the development of AZIBs. Herein, a low-cost, easy-to-handle, and efficient small-molecule electrolyte additive, 1-Methoxy-2-propanol (PM), is employed to address these issues. The multifunctional additive can inhibit side reactions by disrupting the electrolyte’s hydrogen-bonding network and adjusting the solvated structure of Zn<sup>2+</sup>. Additionally, it can induce the preferential orientation deposition of Zn(002) on the surface of the Zn anode. It is worth mentioning that the PM-modified electrolyte enables the Zn||Zn symmetric cell to achieve an ultralong cycling stability of 2400 h (1 mA cm<sup>–2</sup>, 1 mAh cm<sup>–2</sup>) and 3000 h (5 mA cm<sup>–2</sup>, 1 mAh cm<sup>–2</sup>), while the Zn||Cu asymmetric cell maintains a high average Coulombic efficiency of 99.49% over 650 cycles (5 mA cm<sup>–2</sup>, 1 mAh cm<sup>–2</sup>). In addition, compared to the ZnSO<sub>4</sub> electrolyte, the full cell using the PM modified electrolyte exhibits higher capacity retention. This study provides a strategic approach to designing multifunctional electrolyte additives for high-performance AZIBs.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 18","pages":"13653–13662"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c01994","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous zinc-ion batteries (AZIBs) have gained wide attention as a promising next-generation energy storage solution, owing to their inherent safety, eco-friendliness, and exceptional volumetric capacity (5855 mAh cm–3). However, the severe dendrite formation and side reactions of the Zn anode have impeded the development of AZIBs. Herein, a low-cost, easy-to-handle, and efficient small-molecule electrolyte additive, 1-Methoxy-2-propanol (PM), is employed to address these issues. The multifunctional additive can inhibit side reactions by disrupting the electrolyte’s hydrogen-bonding network and adjusting the solvated structure of Zn2+. Additionally, it can induce the preferential orientation deposition of Zn(002) on the surface of the Zn anode. It is worth mentioning that the PM-modified electrolyte enables the Zn||Zn symmetric cell to achieve an ultralong cycling stability of 2400 h (1 mA cm–2, 1 mAh cm–2) and 3000 h (5 mA cm–2, 1 mAh cm–2), while the Zn||Cu asymmetric cell maintains a high average Coulombic efficiency of 99.49% over 650 cycles (5 mA cm–2, 1 mAh cm–2). In addition, compared to the ZnSO4 electrolyte, the full cell using the PM modified electrolyte exhibits higher capacity retention. This study provides a strategic approach to designing multifunctional electrolyte additives for high-performance AZIBs.

Abstract Image

调制Zn2+溶剂化结构和沉积行为以获得高性能Zn阳极
水性锌离子电池(azib)由于其固有的安全性、环保性和卓越的容量(5855 mAh cm-3),作为一种有前景的下一代储能解决方案受到了广泛关注。然而,锌阳极严重的枝晶形成和副反应阻碍了azib的发展。本文采用一种低成本、易于操作、高效的小分子电解质添加剂- 1-甲氧基-2-丙醇(PM)来解决这些问题。该多功能添加剂通过破坏电解液的氢键网络和调节Zn2+的溶剂化结构来抑制副反应。此外,它还能诱导Zn(002)在Zn阳极表面的择优取向沉积。值得一提的是,pm修饰的电解质使Zn||Zn对称电池实现了2400 h (1 mA cm-2, 1 mAh cm-2)和3000 h (5 mA cm-2, 1 mAh cm-2)的超长循环稳定性,而Zn||Cu不对称电池在650次循环(5 mA cm-2, 1 mAh cm-2)中保持了99.49%的高平均库仑效率。此外,与ZnSO4电解质相比,使用PM改性电解质的全电池具有更高的容量保持率。本研究为设计高性能azib的多功能电解质添加剂提供了一种策略途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信