Unveiling the Nickel–Manganese Sulfide Electrocatalyst for Enhanced Overall Alkaline Water Splitting

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Harshini Sharan, , , Angappan Kausalya, , , Senthilkumar Lakshmipathi, , , Jayachandran Madhavan, , , Pavithra Karthikesan, , and , Alagiri Mani*, 
{"title":"Unveiling the Nickel–Manganese Sulfide Electrocatalyst for Enhanced Overall Alkaline Water Splitting","authors":"Harshini Sharan,&nbsp;, ,&nbsp;Angappan Kausalya,&nbsp;, ,&nbsp;Senthilkumar Lakshmipathi,&nbsp;, ,&nbsp;Jayachandran Madhavan,&nbsp;, ,&nbsp;Pavithra Karthikesan,&nbsp;, and ,&nbsp;Alagiri Mani*,&nbsp;","doi":"10.1021/acsaem.5c02072","DOIUrl":null,"url":null,"abstract":"<p >Harnessing earth-abundant electrocatalysts for efficient water splitting is a key pursuit in the development of sustainable energy technologies. In this study, plate-like Nickel–manganese sulfide (NMS) was in situ grown on nickel foam, via a simple one-step hydrothermal approach, yielding a binder free electrocatalyst. The synergistic interplay between Ni and Mn in the sulfide matrix, combined with the conductive substrate, endows NMS with an exceptional bifunctional activity for overall water splitting in an alkaline medium. The NMS-based electrolyzer delivers a low cell voltage of 1.69 V at 10 mA/cm<sup>2</sup> and presents a remarkable stability over 150 h under 1 M KOH electrolyte. Notably, theoretical studies from density functional theory (DFT) strongly reinforce the experimental findings, highlighting NMS as a highly efficient bifunctional electrocatalyst. Thus, the viability of this system is positioned as a promising and scalable alternative to precious metal-based electrocatalysts.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 18","pages":"13752–13762"},"PeriodicalIF":5.5000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c02072","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Harnessing earth-abundant electrocatalysts for efficient water splitting is a key pursuit in the development of sustainable energy technologies. In this study, plate-like Nickel–manganese sulfide (NMS) was in situ grown on nickel foam, via a simple one-step hydrothermal approach, yielding a binder free electrocatalyst. The synergistic interplay between Ni and Mn in the sulfide matrix, combined with the conductive substrate, endows NMS with an exceptional bifunctional activity for overall water splitting in an alkaline medium. The NMS-based electrolyzer delivers a low cell voltage of 1.69 V at 10 mA/cm2 and presents a remarkable stability over 150 h under 1 M KOH electrolyte. Notably, theoretical studies from density functional theory (DFT) strongly reinforce the experimental findings, highlighting NMS as a highly efficient bifunctional electrocatalyst. Thus, the viability of this system is positioned as a promising and scalable alternative to precious metal-based electrocatalysts.

Abstract Image

揭示了镍锰硫化电催化剂增强碱性水整体分解
利用地球上丰富的电催化剂进行高效的水分解是可持续能源技术发展的一个关键追求。在本研究中,通过简单的一步水热方法,在泡沫镍上原位生长片状镍锰硫化(NMS),产生无粘结剂的电催化剂。硫化物基质中Ni和Mn之间的协同相互作用与导电衬底相结合,赋予NMS在碱性介质中进行整体水分解的特殊双功能活性。基于nms的电解槽在10 mA/cm2时提供1.69 V的低电池电压,并在1m KOH电解质下提供超过150小时的显着稳定性。值得注意的是,密度泛函理论(DFT)的理论研究有力地支持了实验结果,强调NMS是一种高效的双功能电催化剂。因此,该系统的可行性被定位为贵金属基电催化剂的有前途和可扩展的替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信