Zr-Decorated Synthesized 2D Aza-Triphenylene for High-Capacity Hydrogen Storage: Insights from DFT Simulations

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Muneeb Tariq, , , Amrutha M, , , Mala N. Rao, , and , Brahmananda Chakraborty*, 
{"title":"Zr-Decorated Synthesized 2D Aza-Triphenylene for High-Capacity Hydrogen Storage: Insights from DFT Simulations","authors":"Muneeb Tariq,&nbsp;, ,&nbsp;Amrutha M,&nbsp;, ,&nbsp;Mala N. Rao,&nbsp;, and ,&nbsp;Brahmananda Chakraborty*,&nbsp;","doi":"10.1021/acsaem.5c02664","DOIUrl":null,"url":null,"abstract":"<p >In our study, we explored the practical hydrogen storage properties of transition-metal (Zr)-doped two-dimensional conjugated covalent organic frameworks (COFs), i.e., Aza-triphenylene + Zr (AzaCOF + Zr). We computed the subsequent H<sub>2</sub> adsorption energies and obtained an average adsorption energy of −0.38 eV/H<sub>2</sub>. The average desorption temperature at 5 bar pressure is 310.46 K. The AzaCOF + Zr system can store a maximum of seven H<sub>2</sub> molecules per unit cell, resulting in a weight percentage of 7.26 wt %, which is higher than the gravimetric density requirement (6.5%) set by the US Department of Energy (US-DOE) for H<sub>2</sub> storage. Using charge transfer and orbital density of states (DOS) analyses, we elucidated the mechanism of TM and H<sub>2</sub> binding in Zr-decorated AzaCOF. A charge-transfer mechanism mediates the interaction between H<sub>2</sub> and the AzaCOF + Zr system, wherein each Zr atom loses a net charge of 1.58e to the AzaCOF system, computed by the aid of Bader and charge density analysis. The structural stability of Zr-decorated AzaCOF is checked using ab initio molecular dynamics simulations at a temperature of 300 K. A high diffusion energy barrier (6.4 eV) encountered by the metal adatom nullifies the possibility of metal cluster formation. Thus, by the assistance of density functional theory simulations, we predict high-storage performance of hydrogen in Zr-doped AzaCOF. Such promising theoretical predictions may inspire the experimentalists to design Zr-doped AzaCOF as a high-capacity H<sub>2</sub> storage material.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 18","pages":"13986–13998"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c02664","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In our study, we explored the practical hydrogen storage properties of transition-metal (Zr)-doped two-dimensional conjugated covalent organic frameworks (COFs), i.e., Aza-triphenylene + Zr (AzaCOF + Zr). We computed the subsequent H2 adsorption energies and obtained an average adsorption energy of −0.38 eV/H2. The average desorption temperature at 5 bar pressure is 310.46 K. The AzaCOF + Zr system can store a maximum of seven H2 molecules per unit cell, resulting in a weight percentage of 7.26 wt %, which is higher than the gravimetric density requirement (6.5%) set by the US Department of Energy (US-DOE) for H2 storage. Using charge transfer and orbital density of states (DOS) analyses, we elucidated the mechanism of TM and H2 binding in Zr-decorated AzaCOF. A charge-transfer mechanism mediates the interaction between H2 and the AzaCOF + Zr system, wherein each Zr atom loses a net charge of 1.58e to the AzaCOF system, computed by the aid of Bader and charge density analysis. The structural stability of Zr-decorated AzaCOF is checked using ab initio molecular dynamics simulations at a temperature of 300 K. A high diffusion energy barrier (6.4 eV) encountered by the metal adatom nullifies the possibility of metal cluster formation. Thus, by the assistance of density functional theory simulations, we predict high-storage performance of hydrogen in Zr-doped AzaCOF. Such promising theoretical predictions may inspire the experimentalists to design Zr-doped AzaCOF as a high-capacity H2 storage material.

Abstract Image

zr修饰合成二维叠氮-三苯用于大容量储氢:来自DFT模拟的见解
在我们的研究中,我们探索了过渡金属(Zr)掺杂的二维共轭共价有机框架(COFs),即aza -三苯+ Zr (AzaCOF + Zr)的实际储氢性能。我们计算了后续的H2吸附能,得到平均吸附能为- 0.38 eV/H2。在5bar压力下的平均解吸温度为310.46 K。AzaCOF + Zr体系每单元电池最多可存储7个H2分子,重量百分比为7.26 wt %,高于美国能源部(US- doe)设定的H2存储重量密度要求(6.5%)。利用电荷转移和轨道态密度(DOS)分析,我们阐明了TM和H2在zr修饰AzaCOF中的结合机制。H2与AzaCOF + Zr体系之间的相互作用存在电荷转移机制,通过Bader和电荷密度分析计算,每个Zr原子向AzaCOF体系损失了1.58e的净电荷。在300 K的温度下,用从头算分子动力学方法验证了zr修饰AzaCOF的结构稳定性。金属原子所遇到的高扩散能垒(6.4 eV)消除了形成金属团簇的可能性。因此,通过密度泛函理论模拟,我们预测了掺杂zr的AzaCOF中氢的高存储性能。这些有希望的理论预测可能会启发实验家设计出掺锆的AzaCOF作为高容量储氢材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信