Ultraviolet-Induced Formation of Silver Nanoparticles Anchored by the Conductive-Viscous Polypyrene–Polydopamine Copolymer on CFx Surface for High-Power Li/CFx Battery

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Yifan Liu*, , , Jiacheng He, , , Jiali Du, , , Shengnan Yang, , , Yong Fan, , , Shahab Ahmad, , and , Xian Jian*, 
{"title":"Ultraviolet-Induced Formation of Silver Nanoparticles Anchored by the Conductive-Viscous Polypyrene–Polydopamine Copolymer on CFx Surface for High-Power Li/CFx Battery","authors":"Yifan Liu*,&nbsp;, ,&nbsp;Jiacheng He,&nbsp;, ,&nbsp;Jiali Du,&nbsp;, ,&nbsp;Shengnan Yang,&nbsp;, ,&nbsp;Yong Fan,&nbsp;, ,&nbsp;Shahab Ahmad,&nbsp;, and ,&nbsp;Xian Jian*,&nbsp;","doi":"10.1021/acsaem.5c01905","DOIUrl":null,"url":null,"abstract":"<p >The high energy density lithium/carbon fluoride (Li/CF<sub><i>x</i></sub>) battery meets the challenge of limited high-rate discharge performance due to the low intrinsic conductivity of CF<sub><i>x</i></sub>. Herein, an inorganic/organic (Ag/PPy-PDA) synergistic conductivity strategy is developed to suppress CF<sub><i>x</i></sub> polarization, addressing the ultrahigh rate of CF<sub><i>x</i></sub> batteries for the high F content. Bioinspired by mussel surface chemistry, UV-mediated synthesis of Ag nanoparticles on CF<sub><i>x</i></sub> surfaces is achieved through a polypyrene–polydopamine (PPy-PDA) copolymer-assisted reduction of a silver ammonia solution. During UV irradiation, the copolymer serves a dual function: stabilizing C–F bonds against alkaline degradation in silver ammonia solutions and hindering the defluorination under UV exposure. Detailed mechanistic studies reveal synergistic adhesive growth and surface-protection effects, enabling the precise Ag nanoparticle assembly on CF<sub><i>x</i></sub>. The as-designed CF<sub><i>x</i></sub>@PPy-PDA@Ag composite possesses the advantage of a high F/C ratio, excellent inorganic/organic conductive path, and good wettability of the electrolyte. Therefore, the optimal Li/CF<sub><i>x</i></sub> battery (CF<sub><i>x</i></sub>@PPy-PDA@Ag-10%) achieved a high discharge rate of 15000 mA·g<sup>–1</sup>, delivering a high-power density of 22,404.37 W·kg<sup>–1</sup>. This inorganic/organic (Ag/PPy-PDA) synergistic conductivity strategy lights up the high-rate Li/CF<sub><i>x</i></sub> batteries with a high F/C ratio. A DFT calculation is conducted for CF<sub><i>x</i></sub>, and the result shows that the conductivity is significantly improved, and the interaction between C–F bonds was significantly weakened after the Ag NPs are deposited on the surface.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 18","pages":"13576–13585"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c01905","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The high energy density lithium/carbon fluoride (Li/CFx) battery meets the challenge of limited high-rate discharge performance due to the low intrinsic conductivity of CFx. Herein, an inorganic/organic (Ag/PPy-PDA) synergistic conductivity strategy is developed to suppress CFx polarization, addressing the ultrahigh rate of CFx batteries for the high F content. Bioinspired by mussel surface chemistry, UV-mediated synthesis of Ag nanoparticles on CFx surfaces is achieved through a polypyrene–polydopamine (PPy-PDA) copolymer-assisted reduction of a silver ammonia solution. During UV irradiation, the copolymer serves a dual function: stabilizing C–F bonds against alkaline degradation in silver ammonia solutions and hindering the defluorination under UV exposure. Detailed mechanistic studies reveal synergistic adhesive growth and surface-protection effects, enabling the precise Ag nanoparticle assembly on CFx. The as-designed CFx@PPy-PDA@Ag composite possesses the advantage of a high F/C ratio, excellent inorganic/organic conductive path, and good wettability of the electrolyte. Therefore, the optimal Li/CFx battery (CFx@PPy-PDA@Ag-10%) achieved a high discharge rate of 15000 mA·g–1, delivering a high-power density of 22,404.37 W·kg–1. This inorganic/organic (Ag/PPy-PDA) synergistic conductivity strategy lights up the high-rate Li/CFx batteries with a high F/C ratio. A DFT calculation is conducted for CFx, and the result shows that the conductivity is significantly improved, and the interaction between C–F bonds was significantly weakened after the Ag NPs are deposited on the surface.

Abstract Image

高功率Li/CFx电池中导电粘聚聚乙烯-聚多巴胺共聚物在CFx表面的紫外诱导形成银纳米粒子
高能量密度锂/氟化碳(Li/CFx)电池由于CFx的固有电导率较低,满足了高倍率放电性能有限的挑战。本文提出了一种无机/有机(Ag/ py - pda)协同电导率策略来抑制CFx极化,解决了CFx电池在高F含量下的超高倍率问题。受贻贝表面化学的启发,通过聚丙烯-聚多巴胺(py - pda)共聚物辅助还原银氨溶液,在CFx表面上实现了紫外线介导的银纳米颗粒合成。在紫外线照射下,共聚物具有双重功能:稳定C-F键,防止银氨溶液中的碱性降解,并阻碍紫外线照射下的脱氟。详细的机理研究揭示了协同粘合剂生长和表面保护效应,使银纳米颗粒能够在CFx上精确组装。设计的CFx@PPy-PDA@Ag复合材料具有高F/C比、优异的无机/有机导电路径和良好的电解质润湿性等优点。因此,最佳的锂/CFx电池(CFx@PPy-PDA@Ag-10%)实现了15000 mA·g-1的高放电率,提供了22,404.37 W·kg-1的高功率密度。这种无机/有机(Ag/ py - pda)协同电导率策略点亮了具有高F/C比的高倍率Li/CFx电池。对CFx进行了DFT计算,结果表明,Ag NPs沉积在表面后,其电导率显著提高,C-F键之间的相互作用明显减弱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信