Atomic Layer Deposition of Nanoscale MoO3–x@ZnO Heterostructures for Kinetically Regulating Lithium Storage Behaviors

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Xin Ji, , , Jiyi Li, , , Daxian Cao*, , , Hangcheng Yang, , , Chaohui Yuan, , , Bin Zhao, , , Dandan Ma, , , Zhihui Li, , , Jianwen Shi, , , Yu Chen, , , Yonghong Cheng, , , Xiaogang Han, , , Wenlei Liu*, , , Hongkang Wang*, , and , Xuan Lu*, 
{"title":"Atomic Layer Deposition of Nanoscale MoO3–x@ZnO Heterostructures for Kinetically Regulating Lithium Storage Behaviors","authors":"Xin Ji,&nbsp;, ,&nbsp;Jiyi Li,&nbsp;, ,&nbsp;Daxian Cao*,&nbsp;, ,&nbsp;Hangcheng Yang,&nbsp;, ,&nbsp;Chaohui Yuan,&nbsp;, ,&nbsp;Bin Zhao,&nbsp;, ,&nbsp;Dandan Ma,&nbsp;, ,&nbsp;Zhihui Li,&nbsp;, ,&nbsp;Jianwen Shi,&nbsp;, ,&nbsp;Yu Chen,&nbsp;, ,&nbsp;Yonghong Cheng,&nbsp;, ,&nbsp;Xiaogang Han,&nbsp;, ,&nbsp;Wenlei Liu*,&nbsp;, ,&nbsp;Hongkang Wang*,&nbsp;, and ,&nbsp;Xuan Lu*,&nbsp;","doi":"10.1021/acsaem.5c02186","DOIUrl":null,"url":null,"abstract":"<p >Metal oxides are considered among the most promising anode materials for next-generation lithium-ion batteries (LIBs) owing to their high theoretical capacities. Nevertheless, their practical application is hindered by intrinsic drawbacks, such as limited active sites, low electrical conductivity, and drastic volume variation during cycling. Rational construction of heterostructures offers a powerful strategy to overcome these limitations, but precise control at the nanoscale and a fundamental understanding of how heterostructures influence lithium storage behavior remain elusive. Herein, we report the atomic layer deposition (ALD)-enabled synthesis of two distinct MoO<sub>3-<i>x</i></sub>@ZnO heterostructures with controllable oxygen vacancies and tunable ZnO crystallinity. The underlying mechanism between the lithium storage behavior and the varied structures has been well revealed. A transition from amorphous ZnO (MoO<sub>3-<i>x</i></sub>@a-ZnO) to crystalline ZnO with a preferred (100) orientation (MoO<sub>3-<i>x</i></sub>@c-ZnO) leads to a shift in the dominant lithium storage mechanism─from pseudocapacitive behavior to diffusion-controlled processes. As a result, MoO<sub>3-<i>x</i></sub>@a-ZnO delivers a high specific capacity of 1016 mA h/g but suffers from rapid capacity fading, whereas MoO<sub>3-<i>x</i></sub>@c-ZnO exhibits delayed activation and gradually reaches 1035 mA h/g after prolonged cycling. This study provides critical insights into the structure–property relationships of oxide-based heterostructures and offers valuable guidance for the rational design of advanced metal oxide anodes for LIBs.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 18","pages":"13840–13850"},"PeriodicalIF":5.5000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c02186","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Metal oxides are considered among the most promising anode materials for next-generation lithium-ion batteries (LIBs) owing to their high theoretical capacities. Nevertheless, their practical application is hindered by intrinsic drawbacks, such as limited active sites, low electrical conductivity, and drastic volume variation during cycling. Rational construction of heterostructures offers a powerful strategy to overcome these limitations, but precise control at the nanoscale and a fundamental understanding of how heterostructures influence lithium storage behavior remain elusive. Herein, we report the atomic layer deposition (ALD)-enabled synthesis of two distinct MoO3-x@ZnO heterostructures with controllable oxygen vacancies and tunable ZnO crystallinity. The underlying mechanism between the lithium storage behavior and the varied structures has been well revealed. A transition from amorphous ZnO (MoO3-x@a-ZnO) to crystalline ZnO with a preferred (100) orientation (MoO3-x@c-ZnO) leads to a shift in the dominant lithium storage mechanism─from pseudocapacitive behavior to diffusion-controlled processes. As a result, MoO3-x@a-ZnO delivers a high specific capacity of 1016 mA h/g but suffers from rapid capacity fading, whereas MoO3-x@c-ZnO exhibits delayed activation and gradually reaches 1035 mA h/g after prolonged cycling. This study provides critical insights into the structure–property relationships of oxide-based heterostructures and offers valuable guidance for the rational design of advanced metal oxide anodes for LIBs.

Abstract Image

纳米级MoO3 - x@ZnO异质结构的原子层沉积动力学调节锂存储行为
金属氧化物具有较高的理论容量,被认为是下一代锂离子电池最有前途的负极材料之一。然而,它们的实际应用受到固有缺陷的阻碍,如有限的活性位点,低导电性,以及在循环过程中剧烈的体积变化。异质结构的合理构建为克服这些限制提供了有力的策略,但在纳米尺度上的精确控制以及对异质结构如何影响锂存储行为的基本理解仍然难以捉摸。在这里,我们报道了原子层沉积(ALD)使两种不同的MoO3-x@ZnO异质结构的合成,具有可控的氧空位和可调的ZnO结晶度。揭示了锂的储存行为与不同结构之间的潜在机制。从无定形ZnO (MoO3-x@a-ZnO)到具有优选(100)取向的ZnO晶体(MoO3-x@c-ZnO)的转变导致了主要锂存储机制的转变──从赝电容行为到扩散控制过程。结果,MoO3-x@a-ZnO提供了1016 mA h/g的高比容量,但遭受快速的容量衰减,而MoO3-x@c-ZnO表现出延迟激活,并在长时间循环后逐渐达到1035 mA h/g。该研究对基于氧化物的异质结构的结构-性能关系提供了重要的见解,并为lib先进金属氧化物阳极的合理设计提供了有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信