Pengxiao Li, Lin Li, Jingminjie Nan, Jiahuan Chen, Jielin Sun, Yanan Cao
{"title":"KEGNI: knowledge graph enhanced framework for gene regulatory network inference","authors":"Pengxiao Li, Lin Li, Jingminjie Nan, Jiahuan Chen, Jielin Sun, Yanan Cao","doi":"10.1186/s13059-025-03780-7","DOIUrl":null,"url":null,"abstract":"Inference of cell type-specific gene regulatory networks (GRNs) is a fundamental step in investigating complex regulatory mechanisms. Here, we present KEGNI (Knowledge graph-Enhanced Gene regulatory Network Inference), a knowledge-guided framework that employs a graph autoencoder to capture gene regulatory relationships and incorporates a knowledge graph to infer GRNs based on scRNA-seq data. KEGNI shows superior performance compared to multiple methods using scRNA-seq data or paired scRNA-seq and scATAC-seq data. KEGNI can identify driver genes and elucidate the regulatory mechanisms underlying distinct cellular contexts. The modular design of KEGNI supports the integration of various knowledge graphs for context-specific tasks.\n","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"85 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03780-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Inference of cell type-specific gene regulatory networks (GRNs) is a fundamental step in investigating complex regulatory mechanisms. Here, we present KEGNI (Knowledge graph-Enhanced Gene regulatory Network Inference), a knowledge-guided framework that employs a graph autoencoder to capture gene regulatory relationships and incorporates a knowledge graph to infer GRNs based on scRNA-seq data. KEGNI shows superior performance compared to multiple methods using scRNA-seq data or paired scRNA-seq and scATAC-seq data. KEGNI can identify driver genes and elucidate the regulatory mechanisms underlying distinct cellular contexts. The modular design of KEGNI supports the integration of various knowledge graphs for context-specific tasks.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.