Yipeng Guo , Dahao Zou , Min Hu , Xiong Zhang , Fang Xu , Yongjie Zhang , Jiejing Chen
{"title":"Influence of wicking geotextile installation on moisture migration in silt under rainfall infiltration","authors":"Yipeng Guo , Dahao Zou , Min Hu , Xiong Zhang , Fang Xu , Yongjie Zhang , Jiejing Chen","doi":"10.1016/j.geotexmem.2025.09.002","DOIUrl":null,"url":null,"abstract":"<div><div>Silt is widely used in subgrade construction in the middle and lower reaches of the Yellow River in China due to limited availability of high-quality fill. However, its high moisture sensitivity and low strength often lead to pumping, settlement, and deformation. This study investigates the hydraulic performance of a wicking geotextile in silt under simulated rainfall infiltration using one-dimensional soil column experiments. Three installation configurations were evaluated: (i) a control sample (CS) without geotextile, (ii) an embedded sample (ES) with the geotextile fully installed as a capillary barrier, and (iii) a surface-exposed sample (SES) with the geotextile extended to the atmosphere to improve drainage. Suction-volumetric moisture content relationships were monitored at multiple depths, and both water storage capacity and drainage mechanisms were assessed. Results indicate that ES and SES reached stabilization at similar suction thresholds, however, the SES more effectively delayed saturation and facilitated moisture migration by evaporation. Surface exposure induced a relative humidity gradient, generating suction and improving drainage, while a siphon effect redistributed water approximately 25 cm below and 15 cm above the geotextile. These findings confirm that the wicking geotextile can act as a capillary barrier and drainage medium, and provide guidance for silty subgrade design.</div></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"54 1","pages":"Pages 25-35"},"PeriodicalIF":6.2000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026611442500113X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Silt is widely used in subgrade construction in the middle and lower reaches of the Yellow River in China due to limited availability of high-quality fill. However, its high moisture sensitivity and low strength often lead to pumping, settlement, and deformation. This study investigates the hydraulic performance of a wicking geotextile in silt under simulated rainfall infiltration using one-dimensional soil column experiments. Three installation configurations were evaluated: (i) a control sample (CS) without geotextile, (ii) an embedded sample (ES) with the geotextile fully installed as a capillary barrier, and (iii) a surface-exposed sample (SES) with the geotextile extended to the atmosphere to improve drainage. Suction-volumetric moisture content relationships were monitored at multiple depths, and both water storage capacity and drainage mechanisms were assessed. Results indicate that ES and SES reached stabilization at similar suction thresholds, however, the SES more effectively delayed saturation and facilitated moisture migration by evaporation. Surface exposure induced a relative humidity gradient, generating suction and improving drainage, while a siphon effect redistributed water approximately 25 cm below and 15 cm above the geotextile. These findings confirm that the wicking geotextile can act as a capillary barrier and drainage medium, and provide guidance for silty subgrade design.
期刊介绍:
The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident.
Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.