{"title":"Gaussian process modelling of infectious diseases using the Greta software package and GPUs","authors":"Eva Gunn , Nikhil Sengupta , Ben Swallow","doi":"10.1016/j.jtbi.2025.112278","DOIUrl":null,"url":null,"abstract":"<div><div>Gaussian process are a widely-used statistical tool for conducting non-parametric inference in applied sciences, with many computational packages available to fit to data and predict future observations. We study the use of the Greta software for Bayesian inference to apply Gaussian process regression to spatio-temporal data of infectious disease outbreaks and predict future outbreaks. Greta builds on Tensorflow, making it comparatively easy to take advantage of the significant gain in speed offered by GPUs. In these complex spatio-temporal models, we show a reduction of up to 70% in computational time relative to fitting the same models on CPUs. We show how the choice of covariance kernel impacts the ability to infer spread and extrapolate to unobserved spatial and temporal units. The inference pipeline is applied to weekly incidence data on tuberculosis in the East and West Midlands regions of England over a period of two years.</div></div>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"616 ","pages":"Article 112278"},"PeriodicalIF":2.0000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022519325002449","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Gaussian process are a widely-used statistical tool for conducting non-parametric inference in applied sciences, with many computational packages available to fit to data and predict future observations. We study the use of the Greta software for Bayesian inference to apply Gaussian process regression to spatio-temporal data of infectious disease outbreaks and predict future outbreaks. Greta builds on Tensorflow, making it comparatively easy to take advantage of the significant gain in speed offered by GPUs. In these complex spatio-temporal models, we show a reduction of up to 70% in computational time relative to fitting the same models on CPUs. We show how the choice of covariance kernel impacts the ability to infer spread and extrapolate to unobserved spatial and temporal units. The inference pipeline is applied to weekly incidence data on tuberculosis in the East and West Midlands regions of England over a period of two years.
期刊介绍:
The Journal of Theoretical Biology is the leading forum for theoretical perspectives that give insight into biological processes. It covers a very wide range of topics and is of interest to biologists in many areas of research, including:
• Brain and Neuroscience
• Cancer Growth and Treatment
• Cell Biology
• Developmental Biology
• Ecology
• Evolution
• Immunology,
• Infectious and non-infectious Diseases,
• Mathematical, Computational, Biophysical and Statistical Modeling
• Microbiology, Molecular Biology, and Biochemistry
• Networks and Complex Systems
• Physiology
• Pharmacodynamics
• Animal Behavior and Game Theory
Acceptable papers are those that bear significant importance on the biology per se being presented, and not on the mathematical analysis. Papers that include some data or experimental material bearing on theory will be considered, including those that contain comparative study, statistical data analysis, mathematical proof, computer simulations, experiments, field observations, or even philosophical arguments, which are all methods to support or reject theoretical ideas. However, there should be a concerted effort to make papers intelligible to biologists in the chosen field.