Direct insights into synthesis, protein integrity, and blood microrheology of albumin microbubbles.

IF 9.6
Tatiana M Estifeeva, Denis A Borozdenko, Arina V Papugaeva, Galina L Kalinichenko, Irina P Vlasova, Leonid I Gudzerov, Timur Aliev, Nikita A Krotkov, Alexey V Boltenko, Anna O Orlova, Anna M Nechaeva, Yaroslav O Mezhuev, Irina M Le-Deygen, Dmitry A Bunin, Vladislav S Petrovskii, Gennady B Khomutov, Matvei K Maksimov, Andrei E Lugovtsov, Alexander V Priezzhev, Igor I Potemkin, Dmitry A Gorin, Yulia G Gorbunova, Ekaterina V Skorb, Sviatlana A Ulasevich, Roman A Barmin, Polina G Rudakovskaya
{"title":"Direct insights into synthesis, protein integrity, and blood microrheology of albumin microbubbles.","authors":"Tatiana M Estifeeva, Denis A Borozdenko, Arina V Papugaeva, Galina L Kalinichenko, Irina P Vlasova, Leonid I Gudzerov, Timur Aliev, Nikita A Krotkov, Alexey V Boltenko, Anna O Orlova, Anna M Nechaeva, Yaroslav O Mezhuev, Irina M Le-Deygen, Dmitry A Bunin, Vladislav S Petrovskii, Gennady B Khomutov, Matvei K Maksimov, Andrei E Lugovtsov, Alexander V Priezzhev, Igor I Potemkin, Dmitry A Gorin, Yulia G Gorbunova, Ekaterina V Skorb, Sviatlana A Ulasevich, Roman A Barmin, Polina G Rudakovskaya","doi":"10.1016/j.actbio.2025.09.026","DOIUrl":null,"url":null,"abstract":"<p><p>Albumin microbubbles (MB) were among the first ultrasound (US) contrast agents used clinically. However, they are believed to contain denatured protein motifs, which compromise their stability, hence, limit their diagnostic and therapeutic utility. This study investigates the protein integrity, cavitation dynamics during US-assisted synthesis, and blood microrheology of albumin MB to better understand and improve their performance. Using bovine serum albumin as the shell material, we found that complexation with either a small molecule or macromolecular additive increased MB yield and enhanced acoustic stability. Spectroscopic analysis showed that MB shell formation favors protein structures close to the native state, while more severely altered fractions remain excluded from the shell. High-speed imaging and cavitation activity profiling revealed that additive-containing solutions suppressed cavitation activity while promoting the formation of sub-50 µm MB precursors under synthesis-mimicking conditions, leading to higher MB concentrations. Blood microrheology tests confirmed that albumin-copolymer MB had minimal impact on red blood cell deformability, aggregation, and critical shear stress, while in vivo cardiac US imaging showed their strong echogenicity lasting over 5 min post-injection. Together, these findings highlight how fine-tuning MB shell composition ‒ combined with structural and functional evaluation ‒ advances the understanding needed to improve albumin MB application potential. STATEMENT OF SIGNIFICANCE: This work provides integrated analysis of albumin-coated microbubbles, correlating protein structural integrity, synthesis dynamics, and blood microrheology. By combining spectroscopy, high-speed imaging, and rheological profiling, we demonstrate that rational additive selection enables microbubble formulations with enhanced acoustic stability, supported by in vivo cardiac ultrasound imaging. Notably, we show that microbubble formation favors albumin molecules retaining structures close to the native state, challenging the prevailing assumption that albumin shells are irreversibly denatured during synthesis. These findings provide a basis for designing structurally stable protein-coated microbubbles for effective ultrasound use.</p>","PeriodicalId":93848,"journal":{"name":"Acta biomaterialia","volume":" ","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta biomaterialia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.actbio.2025.09.026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Albumin microbubbles (MB) were among the first ultrasound (US) contrast agents used clinically. However, they are believed to contain denatured protein motifs, which compromise their stability, hence, limit their diagnostic and therapeutic utility. This study investigates the protein integrity, cavitation dynamics during US-assisted synthesis, and blood microrheology of albumin MB to better understand and improve their performance. Using bovine serum albumin as the shell material, we found that complexation with either a small molecule or macromolecular additive increased MB yield and enhanced acoustic stability. Spectroscopic analysis showed that MB shell formation favors protein structures close to the native state, while more severely altered fractions remain excluded from the shell. High-speed imaging and cavitation activity profiling revealed that additive-containing solutions suppressed cavitation activity while promoting the formation of sub-50 µm MB precursors under synthesis-mimicking conditions, leading to higher MB concentrations. Blood microrheology tests confirmed that albumin-copolymer MB had minimal impact on red blood cell deformability, aggregation, and critical shear stress, while in vivo cardiac US imaging showed their strong echogenicity lasting over 5 min post-injection. Together, these findings highlight how fine-tuning MB shell composition ‒ combined with structural and functional evaluation ‒ advances the understanding needed to improve albumin MB application potential. STATEMENT OF SIGNIFICANCE: This work provides integrated analysis of albumin-coated microbubbles, correlating protein structural integrity, synthesis dynamics, and blood microrheology. By combining spectroscopy, high-speed imaging, and rheological profiling, we demonstrate that rational additive selection enables microbubble formulations with enhanced acoustic stability, supported by in vivo cardiac ultrasound imaging. Notably, we show that microbubble formation favors albumin molecules retaining structures close to the native state, challenging the prevailing assumption that albumin shells are irreversibly denatured during synthesis. These findings provide a basis for designing structurally stable protein-coated microbubbles for effective ultrasound use.

直接洞察合成,蛋白质的完整性,和白蛋白微泡的血液微流变学。
白蛋白微泡(MB)是最早用于临床的超声造影剂之一。然而,它们被认为含有变性蛋白基序,这损害了它们的稳定性,因此限制了它们的诊断和治疗效用。本研究通过研究蛋白完整性、us辅助合成过程中的空化动力学以及MB白蛋白的血液微流变学来更好地了解和提高其性能。使用牛血清白蛋白作为壳材料,我们发现与小分子或大分子添加剂络合可以提高MB的产率和增强声稳定性。光谱分析表明,MB外壳形成有利于接近天然状态的蛋白质结构,而更严重改变的部分仍然被排除在外壳之外。高速成像和空化活性分析显示,在模拟合成条件下,含添加剂的溶液抑制了空化活性,同时促进了低于50 µm的MB前体的形成,从而导致更高的MB浓度。血液微流变学测试证实,白蛋白共聚物MB对红细胞变形性、聚集性和临界剪切应力的影响最小,而体内心脏超声成像显示其在注射后持续5分钟以上的强回声。总之,这些发现突出了微调MB外壳组成-结合结构和功能评估-如何提高白蛋白MB应用潜力所需的理解。意义声明:这项工作提供了白蛋白包被微泡,相关蛋白质结构完整性,合成动力学和血液微流变学的综合分析。通过结合光谱学、高速成像和流变学分析,我们证明了合理的添加剂选择使微泡配方具有增强的声学稳定性,并得到了体内心脏超声成像的支持。值得注意的是,我们发现微泡的形成有利于白蛋白分子保持接近天然状态的结构,挑战了白蛋白壳在合成过程中不可逆变性的普遍假设。这些发现为设计结构稳定的蛋白包被微泡以有效利用超声提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信