Structural basis for L-isoaspartyl-containing protein recognition by the human PCMTD1 cullin-RING E3 ubiquitin ligase.

IF 4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Eric Z Pang, Boyu Zhao, Cameron Flowers, Elizabeth Oroudjeva, Jasmine B Winter, Vijaya Pandey, Michael R Sawaya, James Wohlschlegel, Joseph A Loo, Jose A Rodriguez, Steven G Clarke
{"title":"Structural basis for L-isoaspartyl-containing protein recognition by the human PCMTD1 cullin-RING E3 ubiquitin ligase.","authors":"Eric Z Pang, Boyu Zhao, Cameron Flowers, Elizabeth Oroudjeva, Jasmine B Winter, Vijaya Pandey, Michael R Sawaya, James Wohlschlegel, Joseph A Loo, Jose A Rodriguez, Steven G Clarke","doi":"10.1016/j.jbc.2025.110735","DOIUrl":null,"url":null,"abstract":"<p><p>A major type of spontaneous protein damage that accumulates with age is the formation of kinked polypeptide chains with L-isoaspartyl residues. Mitigating this damage is necessary for maintaining proteome stability and prolonging organismal survival. While repair through methylation by PCMT1 has been previously shown to suppress L-isoaspartyl accumulation, we provide an additional mechanism for L-isoaspartyl maintenance through PCMTD1, a cullin-RING ligase (CRL). We combined cryo-EM, native mass spectrometry, and biochemical assays to provide insight on how the assembly and architecture of human PCMTD1 in the context of a CRL complex fulfils this alternative mechanism. We show that the PCMTD1 CRL complex specifically binds L-isoaspartyl residues when bound to AdoMet. This work provides evidence for a growing class of E3 ubiquitin ligases that recognize spontaneous covalent modifications as potential substrates for ubiquitylation and subsequent proteasomal degradation.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"110735"},"PeriodicalIF":4.0000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.110735","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A major type of spontaneous protein damage that accumulates with age is the formation of kinked polypeptide chains with L-isoaspartyl residues. Mitigating this damage is necessary for maintaining proteome stability and prolonging organismal survival. While repair through methylation by PCMT1 has been previously shown to suppress L-isoaspartyl accumulation, we provide an additional mechanism for L-isoaspartyl maintenance through PCMTD1, a cullin-RING ligase (CRL). We combined cryo-EM, native mass spectrometry, and biochemical assays to provide insight on how the assembly and architecture of human PCMTD1 in the context of a CRL complex fulfils this alternative mechanism. We show that the PCMTD1 CRL complex specifically binds L-isoaspartyl residues when bound to AdoMet. This work provides evidence for a growing class of E3 ubiquitin ligases that recognize spontaneous covalent modifications as potential substrates for ubiquitylation and subsequent proteasomal degradation.

人PCMTD1 cullin-RING E3泛素连接酶识别含l-异天冬氨酸蛋白的结构基础。
随着年龄的增长而积累的自发蛋白质损伤的主要类型是l -异天冬氨酸残基形成弯曲的多肽链。减轻这种损害对于维持蛋白质组的稳定性和延长生物体的生存是必要的。虽然PCMT1通过甲基化修复已被证明可以抑制l -异天冬氨酸的积累,但我们提供了通过PCMTD1(一种cullin-RING连接酶(CRL))维持l -异天冬氨酸的额外机制。我们结合冷冻电镜、天然质谱分析和生化分析来深入了解人类PCMTD1在CRL复合物背景下的组装和结构是如何实现这种替代机制的。我们发现PCMTD1 CRL复合物在与AdoMet结合时特异性结合l -异天冬氨酸残基。这项工作为越来越多的E3泛素连接酶提供了证据,这些酶识别自发共价修饰作为泛素化和随后的蛋白酶体降解的潜在底物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biological Chemistry
Journal of Biological Chemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
4.20%
发文量
1233
期刊介绍: The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信