Caitlin M. Lange , Ryo Higuchi-Sanabria , Caroline Kumsta
{"title":"Autophagy in proteostasis and aging in Caenorhabditis elegans","authors":"Caitlin M. Lange , Ryo Higuchi-Sanabria , Caroline Kumsta","doi":"10.1016/j.cstres.2025.100115","DOIUrl":null,"url":null,"abstract":"<div><div>Proteostasis (protein homeostasis), the balance of protein synthesis, folding, and degradation, is critical for cellular function and organismal health. Its disruption leads to the accumulation of misfolded and aggregated proteins, hallmarks of aging and age-related diseases, including neurodegeneration. Autophagy, a conserved lysosome-mediated degradation pathway, is central to proteostasis by clearing toxic proteins and damaged organelles. In <em>Caenorhabditis elegans</em>, studies across conserved longevity paradigms and models of neurodegenerative diseases have defined key mechanisms by which autophagy maintains proteostasis during aging and stress. Beyond its degradative functions, autophagy contributes to spatial quality control by promoting the formation of potentially protective protein inclusions and coordinating with the ubiquitin-proteasome system. Emerging evidence also points to noncanonical autophagy pathways, such as unconventional secretion and inter-tissue communication, that broaden its role in systemic proteostasis. Together, these advances underscore autophagy’s multifaceted contribution to protein quality control, with wide-ranging implications for aging, stress resistance, and neurodegenerative disease.</div></div>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":"30 6","pages":"Article 100115"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Stress & Chaperones","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1355814525000604","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Proteostasis (protein homeostasis), the balance of protein synthesis, folding, and degradation, is critical for cellular function and organismal health. Its disruption leads to the accumulation of misfolded and aggregated proteins, hallmarks of aging and age-related diseases, including neurodegeneration. Autophagy, a conserved lysosome-mediated degradation pathway, is central to proteostasis by clearing toxic proteins and damaged organelles. In Caenorhabditis elegans, studies across conserved longevity paradigms and models of neurodegenerative diseases have defined key mechanisms by which autophagy maintains proteostasis during aging and stress. Beyond its degradative functions, autophagy contributes to spatial quality control by promoting the formation of potentially protective protein inclusions and coordinating with the ubiquitin-proteasome system. Emerging evidence also points to noncanonical autophagy pathways, such as unconventional secretion and inter-tissue communication, that broaden its role in systemic proteostasis. Together, these advances underscore autophagy’s multifaceted contribution to protein quality control, with wide-ranging implications for aging, stress resistance, and neurodegenerative disease.
期刊介绍:
Cell Stress and Chaperones is an integrative journal that bridges the gap between laboratory model systems and natural populations. The journal captures the eclectic spirit of the cellular stress response field in a single, concentrated source of current information. Major emphasis is placed on the effects of climate change on individual species in the natural environment and their capacity to adapt. This emphasis expands our focus on stress biology and medicine by linking climate change effects to research on cellular stress responses of animals, micro-organisms and plants.