Water-Soluble Salt-Template-Assisted Fabrication of Co4N@C for Efficient Tetracycline Destruction via Peroxymonosulfate Activation

IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ChemNanoMat Pub Date : 2025-07-30 DOI:10.1002/cnma.202500150
Lan Lin, Guangyin Fan
{"title":"Water-Soluble Salt-Template-Assisted Fabrication of Co4N@C for Efficient Tetracycline Destruction via Peroxymonosulfate Activation","authors":"Lan Lin,&nbsp;Guangyin Fan","doi":"10.1002/cnma.202500150","DOIUrl":null,"url":null,"abstract":"<p>The facile synthesis of functional materials containing Co<sub>4</sub>N centers presents a significant challenge, particularly in achieving effective integration of Co<sub>4</sub>N nanoparticles with porous carbons. In this study, Co<sub>4</sub>N nanoparticles anchored on porous carbon are fabricated using a water-soluble Na<sub>2</sub>SO<sub>4</sub> template through urea-assisted pyrolysis, with precise control of the calcination temperature for the Co@C precursor. The resulting Co<sub>4</sub>N@C composite, featuring Co<sub>4</sub>N nanoparticles as the primary active centers, exhibits high performance in peroxymonosulfate activation for tetracycline (TC) degradation, achieving a degradation rate exceeding 90% within 15 min. The magnetic properties of Co<sub>4</sub>N@C facilitate its easy separation from the reaction medium, and the recovered catalyst demonstrates only a slight decline in removal efficiency observed over five consecutive cycles. Quenching and electron paramagnetic resonance tests reveal that the degradation pathways involve both free radicals and nonfree radicals, with the electron transfer mechanism predominantly occurring in the nonradical pathway. Three degradation pathways are proposed based on the documentation of intermediate products from TC decomposition. The toxicity assessment of these intermediates and the original TC indicates a reduction in phytotoxicity of the degraded TC solution using the Co<sub>4</sub>N@C/PNS system.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"11 9","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://aces.onlinelibrary.wiley.com/doi/10.1002/cnma.202500150","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The facile synthesis of functional materials containing Co4N centers presents a significant challenge, particularly in achieving effective integration of Co4N nanoparticles with porous carbons. In this study, Co4N nanoparticles anchored on porous carbon are fabricated using a water-soluble Na2SO4 template through urea-assisted pyrolysis, with precise control of the calcination temperature for the Co@C precursor. The resulting Co4N@C composite, featuring Co4N nanoparticles as the primary active centers, exhibits high performance in peroxymonosulfate activation for tetracycline (TC) degradation, achieving a degradation rate exceeding 90% within 15 min. The magnetic properties of Co4N@C facilitate its easy separation from the reaction medium, and the recovered catalyst demonstrates only a slight decline in removal efficiency observed over five consecutive cycles. Quenching and electron paramagnetic resonance tests reveal that the degradation pathways involve both free radicals and nonfree radicals, with the electron transfer mechanism predominantly occurring in the nonradical pathway. Three degradation pathways are proposed based on the documentation of intermediate products from TC decomposition. The toxicity assessment of these intermediates and the original TC indicates a reduction in phytotoxicity of the degraded TC solution using the Co4N@C/PNS system.

Abstract Image

Abstract Image

Abstract Image

水溶性盐模板辅助制备Co4N@C通过过氧单硫酸盐活化高效破坏四环素
含Co4N中心的功能材料的快速合成提出了一个重大挑战,特别是如何实现Co4N纳米颗粒与多孔碳的有效整合。在本研究中,利用水溶性Na2SO4模板,通过尿素辅助热解,精确控制Co@C前驱体的煅烧温度,制备了锚定在多孔碳上的Co4N纳米颗粒。合成的Co4N@C复合材料以Co4N纳米颗粒为主要活性中心,具有高效的过氧单硫酸盐活化降解四环素(TC)的性能,在15 min内降解率超过90%。Co4N@C的磁性使其易于从反应介质中分离,并且在连续五个循环中,回收的催化剂的去除效率仅略有下降。猝灭和电子顺磁共振实验表明,降解途径涉及自由基和非自由基,其中电子转移机制主要发生在非自由基途径。根据TC分解中间产物的文献资料,提出了三种降解途径。对这些中间体和原始TC的毒性评估表明,使用Co4N@C/PNS系统降解的TC溶液的植物毒性降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemNanoMat
ChemNanoMat Energy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍: ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信