Stephen Sunday Emmanuel, Abdullah K. Alanazi, Ademidun Adeola Adesibikan, Gloria Onome Achurefe, Ebenezer Temiloluwa Abimbola, Miracle Adeyeni Ajayi
{"title":"Recent advances in nano-architecture materials for the photocatalytic degradation of organic sunscreen chemical water pollutants","authors":"Stephen Sunday Emmanuel, Abdullah K. Alanazi, Ademidun Adeola Adesibikan, Gloria Onome Achurefe, Ebenezer Temiloluwa Abimbola, Miracle Adeyeni Ajayi","doi":"10.1002/jccs.70062","DOIUrl":null,"url":null,"abstract":"<p>Organic sunscreen chemicals (OSSC) are a two-edged sword, filtering UV irradiation from the human body (preventing it from penetrating the skin and causing damage) while infiltrating the environment as pollutants, especially aquatic bodies. Interestingly, photocatalytic degradation employing nanoarchitecture materials has emerged as a cutting-edge technique for cleaning up these aquatic contaminants. The goal of this work is to review the remediation of OSSC through photocatalytic degradation-oriented technology and holistically evaluate the performance of various nanoarchitecture materials. As part of the novelty to demonstrate the pilot/industrial-scale potential and eco-economic benefits of this strategy, this work reviews recyclability and real-life application studies, which are sometimes overlooked. Also, this work reviews the effect of radical scavengers and electron trapping studies to clarify the process of OSSC photocatalytic degradation. Remarkably, it was discovered that various nanomaterials can deliver over 70%–100% degradation efficiency in 4–540 min. Additionally, the electron trapping studies revealed that the primary radicals in charge of photocatalytic degradation activities are ˙O<sub>2</sub><sup>−</sup> and ˙OH. The findings also showed that different nanomaterials may be reused 2–10 times while maintaining >70% of the initial efficiency. This review demonstrated that nanoarchitecture materials are game changers for the sustainable and effective remediation of organic sunscreen chemicals.</p>","PeriodicalId":17262,"journal":{"name":"Journal of The Chinese Chemical Society","volume":"72 9","pages":"935-957"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Chinese Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jccs.70062","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Organic sunscreen chemicals (OSSC) are a two-edged sword, filtering UV irradiation from the human body (preventing it from penetrating the skin and causing damage) while infiltrating the environment as pollutants, especially aquatic bodies. Interestingly, photocatalytic degradation employing nanoarchitecture materials has emerged as a cutting-edge technique for cleaning up these aquatic contaminants. The goal of this work is to review the remediation of OSSC through photocatalytic degradation-oriented technology and holistically evaluate the performance of various nanoarchitecture materials. As part of the novelty to demonstrate the pilot/industrial-scale potential and eco-economic benefits of this strategy, this work reviews recyclability and real-life application studies, which are sometimes overlooked. Also, this work reviews the effect of radical scavengers and electron trapping studies to clarify the process of OSSC photocatalytic degradation. Remarkably, it was discovered that various nanomaterials can deliver over 70%–100% degradation efficiency in 4–540 min. Additionally, the electron trapping studies revealed that the primary radicals in charge of photocatalytic degradation activities are ˙O2− and ˙OH. The findings also showed that different nanomaterials may be reused 2–10 times while maintaining >70% of the initial efficiency. This review demonstrated that nanoarchitecture materials are game changers for the sustainable and effective remediation of organic sunscreen chemicals.
期刊介绍:
The Journal of the Chinese Chemical Society was founded by The Chemical Society Located in Taipei in 1954, and is the oldest general chemistry journal in Taiwan. It is strictly peer-reviewed and welcomes review articles, full papers, notes and communications written in English. The scope of the Journal of the Chinese Chemical Society covers all major areas of chemistry: organic chemistry, inorganic chemistry, analytical chemistry, biochemistry, physical chemistry, and materials science.