Development and Application of a Dynamic Theoretical Model for the Eddy Current Dampers Based on Mechanical Experiment

IF 5.1 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Hui-Juan Liu, Xing Fu, Hong-Nan Li, Fu-Shun Liu
{"title":"Development and Application of a Dynamic Theoretical Model for the Eddy Current Dampers Based on Mechanical Experiment","authors":"Hui-Juan Liu,&nbsp;Xing Fu,&nbsp;Hong-Nan Li,&nbsp;Fu-Shun Liu","doi":"10.1155/stc/1063991","DOIUrl":null,"url":null,"abstract":"<p>Eddy current damper (ECD) has emerged as a highly desirable solution for vibration control due to its exceptional damping performance and durability. However, the inherent nonlinearity of the ECD poses significant challenges in research and engineering implementations. Traditional views attribute the nonlinearity of the ECD solely to variation in velocity. However, experimental results reveal that nonlinearity still exists even at a constant velocity. The nonlinearity at a constant velocity has not been sufficiently emphasized and quantitatively modeled. This study addresses the issue by developing a dynamic theoretical model with clear physical meaning and a simple mathematical form. A comprehensive study of the nonlinear characteristics of the ECD has been carried out using a combination of experimental and theoretical analysis. Firstly, the basic construction and working mechanism of a velocity-amplified hamburger-shaped eddy current damper (VHECD) are described in detail. Subsequently, a prototype experiment is conducted to explore the mechanical performance of the VHECD. Most importantly, a nonlinear phenomenon at a constant velocity is revealed and a dynamic theoretical model is developed. Finally, the dynamic theoretical model is validated through the experimental results of the VHECD and numerical simulation of a single-degree-of-freedom (SDOF) system. The proposed dynamical theoretical model generalizes the nonlinear phenomenon at a constant velocity. Both the coefficient of determination of force and the mean absolute percentage error of energy dissipation show that the dynamic theoretical model performs exceptionally well. The numerical simulation of the SDOF system demonstrates that the proposed dynamic theoretical model can more accurately predict the damping performance of ECD than the Wouterse model. This dynamic theoretical model is useful for the physical understanding of the ECD and the engineering application.</p>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2025 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/1063991","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/stc/1063991","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Eddy current damper (ECD) has emerged as a highly desirable solution for vibration control due to its exceptional damping performance and durability. However, the inherent nonlinearity of the ECD poses significant challenges in research and engineering implementations. Traditional views attribute the nonlinearity of the ECD solely to variation in velocity. However, experimental results reveal that nonlinearity still exists even at a constant velocity. The nonlinearity at a constant velocity has not been sufficiently emphasized and quantitatively modeled. This study addresses the issue by developing a dynamic theoretical model with clear physical meaning and a simple mathematical form. A comprehensive study of the nonlinear characteristics of the ECD has been carried out using a combination of experimental and theoretical analysis. Firstly, the basic construction and working mechanism of a velocity-amplified hamburger-shaped eddy current damper (VHECD) are described in detail. Subsequently, a prototype experiment is conducted to explore the mechanical performance of the VHECD. Most importantly, a nonlinear phenomenon at a constant velocity is revealed and a dynamic theoretical model is developed. Finally, the dynamic theoretical model is validated through the experimental results of the VHECD and numerical simulation of a single-degree-of-freedom (SDOF) system. The proposed dynamical theoretical model generalizes the nonlinear phenomenon at a constant velocity. Both the coefficient of determination of force and the mean absolute percentage error of energy dissipation show that the dynamic theoretical model performs exceptionally well. The numerical simulation of the SDOF system demonstrates that the proposed dynamic theoretical model can more accurately predict the damping performance of ECD than the Wouterse model. This dynamic theoretical model is useful for the physical understanding of the ECD and the engineering application.

Abstract Image

基于力学实验的涡流阻尼器动态理论模型的建立与应用
涡流阻尼器(ECD)由于其优异的阻尼性能和耐用性,已经成为一种非常理想的振动控制解决方案。然而,ECD固有的非线性给研究和工程实现带来了重大挑战。传统观点将ECD的非线性仅仅归因于速度的变化。然而,实验结果表明,即使在等速下,非线性仍然存在。匀速时的非线性还没有得到充分的重视和定量模拟。本研究通过建立一个具有明确物理意义和简单数学形式的动态理论模型来解决这个问题。本文采用实验与理论相结合的方法对ECD的非线性特性进行了全面的研究。首先,详细介绍了速度放大型汉堡型涡流阻尼器的基本结构和工作机理。在此基础上,进行了VHECD的力学性能实验。最重要的是,揭示了匀速下的非线性现象,并建立了动力学理论模型。最后,通过VHECD的实验结果和单自由度系统的数值仿真验证了动力学理论模型。所提出的动力学理论模型概括了匀速下的非线性现象。力的决定系数和能量耗散的平均绝对百分比误差均表明,该动力理论模型具有良好的性能。SDOF系统的数值仿真表明,所提出的动力学理论模型比Wouterse模型能更准确地预测ECD的阻尼性能。该动态理论模型有助于对ECD的物理理解和工程应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Structural Control & Health Monitoring
Structural Control & Health Monitoring 工程技术-工程:土木
CiteScore
9.50
自引率
13.00%
发文量
234
审稿时长
8 months
期刊介绍: The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications. Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics. Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信