A Generalised Transform Methodology Using Quantum Computation and Its Application for Electrocardiogram (ECG) Classification

IF 2.8 Q3 QUANTUM SCIENCE & TECHNOLOGY
Bidisha Dhara, Monika Agrawal, Sumantra Dutta Roy
{"title":"A Generalised Transform Methodology Using Quantum Computation and Its Application for Electrocardiogram (ECG) Classification","authors":"Bidisha Dhara,&nbsp;Monika Agrawal,&nbsp;Sumantra Dutta Roy","doi":"10.1049/qtc2.70012","DOIUrl":null,"url":null,"abstract":"<p>Transforms play a pivotal role in the study of signals and images. With the advent of quantum systems, analysing signals in the quantum domain is of particular interest. In this work, we aim to build a generalised transform circuit in the quantum domain. We have shown the working of this circuit for Wavelet transform, Fourier transform, and Discrete Cosine Transform (DCT) on <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>−</mo>\n <mi>D</mi>\n </mrow>\n <annotation> $1-D$</annotation>\n </semantics></math> vector, <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mo>−</mo>\n <mi>D</mi>\n </mrow>\n <annotation> $2-D$</annotation>\n </semantics></math> matrix, and an image respectively. We also take inverse transforms in each of the cases to match with the given initial input. We use simulators for this work, and the results obtained are favourable. We further use this circuit for classification of heart beats as it is an essential task in detection of cardiac diseases. We utilise both classical and quantum computation to classify beats of Electrocardiogram (ECG, hereafter) signals into normal and not-normal beats (non-beats and abnormal beats). This novel architecture to carry out transform is quite general and can be used for any arbitrary transform.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"6 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.70012","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Quantum Communication","FirstCategoryId":"1085","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/qtc2.70012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Transforms play a pivotal role in the study of signals and images. With the advent of quantum systems, analysing signals in the quantum domain is of particular interest. In this work, we aim to build a generalised transform circuit in the quantum domain. We have shown the working of this circuit for Wavelet transform, Fourier transform, and Discrete Cosine Transform (DCT) on 1 D $1-D$ vector, 2 D $2-D$ matrix, and an image respectively. We also take inverse transforms in each of the cases to match with the given initial input. We use simulators for this work, and the results obtained are favourable. We further use this circuit for classification of heart beats as it is an essential task in detection of cardiac diseases. We utilise both classical and quantum computation to classify beats of Electrocardiogram (ECG, hereafter) signals into normal and not-normal beats (non-beats and abnormal beats). This novel architecture to carry out transform is quite general and can be used for any arbitrary transform.

Abstract Image

Abstract Image

Abstract Image

基于量子计算的广义变换方法及其在心电图分类中的应用
变换在信号和图像的研究中起着举足轻重的作用。随着量子系统的出现,分析量子领域的信号变得特别有趣。在这项工作中,我们的目标是在量子域建立一个广义变换电路。我们已经展示了该电路分别对1−D$ 1-D$矢量、2−D$ 2-D$矩阵和图像进行小波变换、傅里叶变换和离散余弦变换(DCT)的工作原理。我们还对每种情况进行逆变换以匹配给定的初始输入。我们使用了模拟器来进行这项工作,得到了良好的结果。我们进一步使用该电路进行心跳分类,因为它是检测心脏疾病的重要任务。我们利用经典计算和量子计算将心电图(ECG)信号的心跳分为正常和不正常的心跳(非心跳和异常心跳)。这种实现变换的新架构具有较强的通用性,可用于任意变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信