Beyond Randomization: Design and Analysis of Discrete Choice Experiments in the Presence of Profile Order Effects Within Choice Sets

IF 1.5 4区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Yicheng Mao, Roselinde Kessels, Robert Mee
{"title":"Beyond Randomization: Design and Analysis of Discrete Choice Experiments in the Presence of Profile Order Effects Within Choice Sets","authors":"Yicheng Mao,&nbsp;Roselinde Kessels,&nbsp;Robert Mee","doi":"10.1002/asmb.70043","DOIUrl":null,"url":null,"abstract":"<p>Discrete Choice Experiments (DCEs) investigate the attributes that affect individual choices among different options and are widely applied across numerous fields. Past DCEs provide clear evidence that the presentation order of the profiles within a choice set can impact the respondents' choices. Ignoring such order effects can produce severely biased estimates, as we illustrate using a product packaging DCE performed for Procter &amp; Gamble in Mexico. Currently, the most common approach to address profile order effects is to randomize the profile order. While this method is relatively easy to implement in online surveys, it can be considerably cumbersome in offline experimental settings. To address this, we suggest incorporating an order covariate in the model to measure the effect of profile order, and propose a Bayesian optimal Balanced Profile Order Design (BPOD) that accounts for this order effect. Our simulation experiments reveal that our Bayesian optimal BPOD achieves accurate parameter estimates comparable to those obtained through randomization in both the multinomial logit model and the panel mixed logit model. Beyond DCEs, this design strategy contributes to broader efforts in experimental design by providing a generalizable framework for addressing structural sources of bias in applied statistical research.</p>","PeriodicalId":55495,"journal":{"name":"Applied Stochastic Models in Business and Industry","volume":"41 5","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asmb.70043","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Stochastic Models in Business and Industry","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asmb.70043","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Discrete Choice Experiments (DCEs) investigate the attributes that affect individual choices among different options and are widely applied across numerous fields. Past DCEs provide clear evidence that the presentation order of the profiles within a choice set can impact the respondents' choices. Ignoring such order effects can produce severely biased estimates, as we illustrate using a product packaging DCE performed for Procter & Gamble in Mexico. Currently, the most common approach to address profile order effects is to randomize the profile order. While this method is relatively easy to implement in online surveys, it can be considerably cumbersome in offline experimental settings. To address this, we suggest incorporating an order covariate in the model to measure the effect of profile order, and propose a Bayesian optimal Balanced Profile Order Design (BPOD) that accounts for this order effect. Our simulation experiments reveal that our Bayesian optimal BPOD achieves accurate parameter estimates comparable to those obtained through randomization in both the multinomial logit model and the panel mixed logit model. Beyond DCEs, this design strategy contributes to broader efforts in experimental design by providing a generalizable framework for addressing structural sources of bias in applied statistical research.

Abstract Image

超越随机化:在选择集中存在剖面顺序效应的离散选择实验的设计与分析
离散选择实验(dce)研究影响个体在不同选择中的选择的属性,并被广泛应用于许多领域。过去的dce提供了明确的证据,表明选择集中概要文件的呈现顺序会影响受访者的选择。忽略这样的顺序效应会产生严重的有偏差的估计,正如我们使用为墨西哥宝洁公司执行的产品包装DCE所说明的那样。目前,解决概要文件顺序效应的最常用方法是随机化概要文件顺序。虽然这种方法在在线调查中相对容易实施,但在离线实验环境中可能相当麻烦。为了解决这个问题,我们建议在模型中加入一个顺序协变量来衡量轮廓顺序的影响,并提出一个贝叶斯最优平衡轮廓顺序设计(BPOD)来解释这种顺序效应。我们的仿真实验表明,我们的贝叶斯最优BPOD在多项logit模型和面板混合logit模型中都获得了与随机化相当的精确参数估计。除了dce之外,这种设计策略通过提供一个可推广的框架来解决应用统计研究中的结构性偏差来源,从而有助于在实验设计中做出更广泛的努力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
67
审稿时长
>12 weeks
期刊介绍: ASMBI - Applied Stochastic Models in Business and Industry (formerly Applied Stochastic Models and Data Analysis) was first published in 1985, publishing contributions in the interface between stochastic modelling, data analysis and their applications in business, finance, insurance, management and production. In 2007 ASMBI became the official journal of the International Society for Business and Industrial Statistics (www.isbis.org). The main objective is to publish papers, both technical and practical, presenting new results which solve real-life problems or have great potential in doing so. Mathematical rigour, innovative stochastic modelling and sound applications are the key ingredients of papers to be published, after a very selective review process. The journal is very open to new ideas, like Data Science and Big Data stemming from problems in business and industry or uncertainty quantification in engineering, as well as more traditional ones, like reliability, quality control, design of experiments, managerial processes, supply chains and inventories, insurance, econometrics, financial modelling (provided the papers are related to real problems). The journal is interested also in papers addressing the effects of business and industrial decisions on the environment, healthcare, social life. State-of-the art computational methods are very welcome as well, when combined with sound applications and innovative models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信