A Multi-Dimensional Feature Fusion Framework With XGBoost for IIoT-Driven Behavioral Analytics in Industrial Internet Systems

IF 0.5 Q4 TELECOMMUNICATIONS
Jiaqi Wang, Yunfeng Zhang, Yizhou He, Xiaolong Jiang
{"title":"A Multi-Dimensional Feature Fusion Framework With XGBoost for IIoT-Driven Behavioral Analytics in Industrial Internet Systems","authors":"Jiaqi Wang,&nbsp;Yunfeng Zhang,&nbsp;Yizhou He,&nbsp;Xiaolong Jiang","doi":"10.1002/itl2.70144","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Industrial Internet of Things (IIoT) systems generate massive behavioral data, demanding efficient analytics frameworks for real-time monitoring. This study proposes a multi-dimensional feature fusion framework integrating XGBoost, tailored for IIoT-driven behavioral pattern recognition. A four-dimensional architecture is constructed to analyze critical attributes across contact degree, status, duration, and social relations, leveraging edge-computed IIoT footprints (e.g., mobile signaling, network interaction data). The framework defines three behavioral modes and achieves 98.89% precision, 98.85% recall, and 98.85% F1-score via XGBoost. Feature importance analysis identifies key indicators such as mobile number status and interaction frequency. This work demonstrates the potential of harmonizing AI with IIoT data fusion, providing a scalable solution for real-time monitoring in Industrial Internet and future network architectures.</p>\n </div>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 6","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Industrial Internet of Things (IIoT) systems generate massive behavioral data, demanding efficient analytics frameworks for real-time monitoring. This study proposes a multi-dimensional feature fusion framework integrating XGBoost, tailored for IIoT-driven behavioral pattern recognition. A four-dimensional architecture is constructed to analyze critical attributes across contact degree, status, duration, and social relations, leveraging edge-computed IIoT footprints (e.g., mobile signaling, network interaction data). The framework defines three behavioral modes and achieves 98.89% precision, 98.85% recall, and 98.85% F1-score via XGBoost. Feature importance analysis identifies key indicators such as mobile number status and interaction frequency. This work demonstrates the potential of harmonizing AI with IIoT data fusion, providing a scalable solution for real-time monitoring in Industrial Internet and future network architectures.

基于XGBoost的多维特征融合框架用于工业互联网系统中iiot驱动的行为分析
工业物联网(IIoT)系统产生大量行为数据,需要高效的实时监控分析框架。本研究提出了一个集成XGBoost的多维特征融合框架,为工业物联网驱动的行为模式识别量身定制。构建了一个四维架构来分析接触程度、状态、持续时间和社会关系等关键属性,利用边缘计算IIoT足迹(例如,移动信令、网络交互数据)。该框架定义了三种行为模式,通过XGBoost实现了98.89%的准确率、98.85%的召回率和98.85%的f1得分。特征重要性分析识别关键指标,如手机号码状态和交互频率。这项工作展示了协调人工智能与工业物联网数据融合的潜力,为工业互联网和未来网络架构中的实时监控提供了可扩展的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信