Boosting Photocatalytic H2 Evolution Performance of ZnIn2S4 via S-Scheme Heterostructuring With ZnMoO4

IF 12
Shikai Wang, Qinghua Liu, Wei Zhang, Junchang Liu, Xueyang Ji, Peiqing Cai, Ruiqi Chen, Siyu Liu, Wenqing Ma, Dafeng Zhang, Xipeng Pu
{"title":"Boosting Photocatalytic H2 Evolution Performance of ZnIn2S4 via S-Scheme Heterostructuring With ZnMoO4","authors":"Shikai Wang,&nbsp;Qinghua Liu,&nbsp;Wei Zhang,&nbsp;Junchang Liu,&nbsp;Xueyang Ji,&nbsp;Peiqing Cai,&nbsp;Ruiqi Chen,&nbsp;Siyu Liu,&nbsp;Wenqing Ma,&nbsp;Dafeng Zhang,&nbsp;Xipeng Pu","doi":"10.1002/cnl2.70054","DOIUrl":null,"url":null,"abstract":"<p>Step-scheme (S-scheme) heterojunctions offer significant potential for enhancing photocatalytic hydrogen evolution (PHE) by promoting charge separation while preserving high redox capabilities. Herein, theoretical calculations predict that constructing a ZnMoO<sub>4</sub>@ZnIn<sub>2</sub>S<sub>4</sub> S-scheme (ZMO@ZIS) heterojunction significantly lowers the Gibbs free energy for H<sub>2</sub> evolution compared to the individual monomers, indicating a thermodynamically and kinetically favored pathway. Guided by this prediction, we synthesized the ZMO@ZIS heterojunction by in situ anchoring ZnIn<sub>2</sub>S<sub>4</sub> nanosheets onto ZnMoO<sub>4</sub> hexagonal platform, with the expectation of achieving excellent photocatalytic H<sub>2</sub> evolution performance. This unique trans-scale assembly strategy spontaneously organizes ZIS into a hierarchical porous network, markedly increasing the surface area and providing abundant accessible active sites and efficient mass transfer channels. Comprehensive experimental characterization combined with detailed theoretical simulation provides compelling evidence confirming the S-scheme electron transfer mechanism and establishment of an internal electric field, where high-potential electrons in ZIS and holes in ZMO are retained for PHE. Consequently, the ZMO@ZIS-13 S-scheme heterojunction achieves an exceptional visible-light PHE rate of 5.045 mmol g<sup>−1</sup> h<sup>−1</sup> under visible light, representing a 10.7-fold improvement compared to that of pure ZnIn<sub>2</sub>S<sub>4</sub>. This study demonstrates the efficacy of theory-guided design and trans-scale assembly for creating efficient S-scheme photocatalysts with optimized charge dynamics.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 5","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70054","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.70054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Step-scheme (S-scheme) heterojunctions offer significant potential for enhancing photocatalytic hydrogen evolution (PHE) by promoting charge separation while preserving high redox capabilities. Herein, theoretical calculations predict that constructing a ZnMoO4@ZnIn2S4 S-scheme (ZMO@ZIS) heterojunction significantly lowers the Gibbs free energy for H2 evolution compared to the individual monomers, indicating a thermodynamically and kinetically favored pathway. Guided by this prediction, we synthesized the ZMO@ZIS heterojunction by in situ anchoring ZnIn2S4 nanosheets onto ZnMoO4 hexagonal platform, with the expectation of achieving excellent photocatalytic H2 evolution performance. This unique trans-scale assembly strategy spontaneously organizes ZIS into a hierarchical porous network, markedly increasing the surface area and providing abundant accessible active sites and efficient mass transfer channels. Comprehensive experimental characterization combined with detailed theoretical simulation provides compelling evidence confirming the S-scheme electron transfer mechanism and establishment of an internal electric field, where high-potential electrons in ZIS and holes in ZMO are retained for PHE. Consequently, the ZMO@ZIS-13 S-scheme heterojunction achieves an exceptional visible-light PHE rate of 5.045 mmol g−1 h−1 under visible light, representing a 10.7-fold improvement compared to that of pure ZnIn2S4. This study demonstrates the efficacy of theory-guided design and trans-scale assembly for creating efficient S-scheme photocatalysts with optimized charge dynamics.

Abstract Image

ZnMoO4 S-Scheme异质结构提高ZnIn2S4光催化析氢性能
阶梯式异质结(S-scheme)通过促进电荷分离,同时保持高氧化还原能力,为增强光催化析氢(PHE)提供了巨大的潜力。在此,理论计算预测,与单个单体相比,构建ZnMoO4@ZnIn2S4 S-scheme (ZMO@ZIS)异质结显著降低了H2演化的吉布斯自由能,表明了热力学和动力学上有利的途径。在此预测的指导下,我们通过原位锚定ZnIn2S4纳米片在ZnMoO4六边形平台上合成了ZMO@ZIS异质结,期望获得优异的光催化析氢性能。这种独特的跨尺度组装策略自发地将ZIS组织成分层多孔网络,显着增加了表面积,并提供了丰富的可访问活性位点和有效的传质通道。综合的实验表征结合详细的理论模拟提供了强有力的证据,证实了S-scheme电子转移机制,并建立了一个内部电场,ZIS中的高势电子和ZMO中的空穴被保留给PHE。因此,ZMO@ZIS-13 S-scheme异质结在可见光下的PHE率为5.045 mmol g−1 h−1,比纯ZnIn2S4提高了10.7倍。该研究证明了理论指导设计和跨尺度组装对于创建具有优化电荷动力学的高效S-scheme光催化剂的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信