Integrating Flame-Retardant Li-Cu Anode With Self-Extinguishing Polymer Electrolyte for Coordinated Thermal Runaway Suppression in Solid-State Li Metal Batteries

IF 12
Longfei Han, Mengdan Zhang, Xiangming Hu, Biao Kong, Wei Wang, Lihua Jiang, Yurui Deng, Yuan Cheng, Wei Wang
{"title":"Integrating Flame-Retardant Li-Cu Anode With Self-Extinguishing Polymer Electrolyte for Coordinated Thermal Runaway Suppression in Solid-State Li Metal Batteries","authors":"Longfei Han,&nbsp;Mengdan Zhang,&nbsp;Xiangming Hu,&nbsp;Biao Kong,&nbsp;Wei Wang,&nbsp;Lihua Jiang,&nbsp;Yurui Deng,&nbsp;Yuan Cheng,&nbsp;Wei Wang","doi":"10.1002/cnl2.70034","DOIUrl":null,"url":null,"abstract":"<p>Solid-state polymer electrolytes have emerged as a safer alternative to liquid electrolytes for lithium metal batteries, yet their flammability and the inherent combustion risks of lithium metal anodes during thermal runaway remain critical safety concerns. Herein, we propose a cost-effective lithium-copper composite anode that synergistically addresses both safety and lithium dendrite suppression challenges. The composite anode enables cells to achieve a fourfold enhancement in cycle lifespan compared with conventional lithium metal anodes. By integrating this non-flammable composite anode with a flame-retardant polymer electrolyte, we establish a dual-protection strategy for battery safety. Notably, the total heat release of composite anode-based batteries decreases by 80% compared to conventional lithium metal counterparts. This study provides a materials engineering solution that simultaneously improves both electrochemical performance and safety metrics for solid-state lithium metal batteries, paving the way for practical high-energy-density battery applications.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 5","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70034","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.70034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Solid-state polymer electrolytes have emerged as a safer alternative to liquid electrolytes for lithium metal batteries, yet their flammability and the inherent combustion risks of lithium metal anodes during thermal runaway remain critical safety concerns. Herein, we propose a cost-effective lithium-copper composite anode that synergistically addresses both safety and lithium dendrite suppression challenges. The composite anode enables cells to achieve a fourfold enhancement in cycle lifespan compared with conventional lithium metal anodes. By integrating this non-flammable composite anode with a flame-retardant polymer electrolyte, we establish a dual-protection strategy for battery safety. Notably, the total heat release of composite anode-based batteries decreases by 80% compared to conventional lithium metal counterparts. This study provides a materials engineering solution that simultaneously improves both electrochemical performance and safety metrics for solid-state lithium metal batteries, paving the way for practical high-energy-density battery applications.

Abstract Image

集成阻燃锂铜阳极与自熄聚合物电解质协同抑制固态锂金属电池热失控
固态聚合物电解质已成为锂金属电池的一种更安全的替代品,但其可燃性和锂金属阳极在热失控时固有的燃烧风险仍然是关键的安全问题。在此,我们提出了一种具有成本效益的锂-铜复合阳极,可协同解决安全性和锂枝晶抑制挑战。与传统的锂金属阳极相比,复合阳极使电池的循环寿命延长了四倍。通过将这种不易燃的复合阳极与阻燃聚合物电解质相结合,我们建立了电池安全的双重保护策略。值得注意的是,与传统的锂金属电池相比,复合阳极电池的总放热量减少了80%。这项研究提供了一种材料工程解决方案,同时提高了固态锂金属电池的电化学性能和安全指标,为实际的高能量密度电池应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信