Enhancing Quality of Experience in Wireless English Education Platforms via Predictive Large Models

IF 0.5 Q4 TELECOMMUNICATIONS
Fei Li
{"title":"Enhancing Quality of Experience in Wireless English Education Platforms via Predictive Large Models","authors":"Fei Li","doi":"10.1002/itl2.70137","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This work presents a Predictive Large Model-Driven Framework (PLMF) for Wireless English Education Platforms (WEEPs) that integrates real-time Quality of Experience (QoE) forecasting, CEFR-aware semantic simplification, and adaptive content delivery in a unified, feedback-driven architecture. To support system evaluation, we construct EduQoE-PLMF, a multimodal dataset comprising CEFR-tagged content, simulated network traces, behavioral logs, and user-rated QoE labels. PLMF is benchmarked against five representative baselines across three key tasks. Experimental results show that PLMF achieves superior performance in QoE prediction (MSE: 0.025, <i>R</i><sup>2</sup>: 0.89), content simplification (SARI: 44.9, Readability: 2.9), and learner engagement (TCR: 83.2%, DR: 11.4%, SSS: 4.3). Ablation studies and heatmap analysis further reveal the complementary value of each system module. These findings demonstrate the effectiveness of combining predictive reasoning, personalization, and delivery optimization to enable robust and learner-centered wireless education systems.</p>\n </div>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 6","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a Predictive Large Model-Driven Framework (PLMF) for Wireless English Education Platforms (WEEPs) that integrates real-time Quality of Experience (QoE) forecasting, CEFR-aware semantic simplification, and adaptive content delivery in a unified, feedback-driven architecture. To support system evaluation, we construct EduQoE-PLMF, a multimodal dataset comprising CEFR-tagged content, simulated network traces, behavioral logs, and user-rated QoE labels. PLMF is benchmarked against five representative baselines across three key tasks. Experimental results show that PLMF achieves superior performance in QoE prediction (MSE: 0.025, R2: 0.89), content simplification (SARI: 44.9, Readability: 2.9), and learner engagement (TCR: 83.2%, DR: 11.4%, SSS: 4.3). Ablation studies and heatmap analysis further reveal the complementary value of each system module. These findings demonstrate the effectiveness of combining predictive reasoning, personalization, and delivery optimization to enable robust and learner-centered wireless education systems.

基于预测性大模型的无线英语教育平台体验质量提升
这项工作提出了一个用于无线英语教育平台(weep)的预测性大型模型驱动框架(PLMF),该框架将实时体验质量(QoE)预测、感知cefr的语义简化和自适应内容交付集成在一个统一的、反馈驱动的架构中。为了支持系统评估,我们构建了EduQoE-PLMF,这是一个多模态数据集,包括cefr标记的内容、模拟网络痕迹、行为日志和用户评价的QoE标签。PLMF是根据三个关键任务的五个代表性基线进行基准测试的。实验结果表明,PLMF在QoE预测(MSE: 0.025, R2: 0.89)、内容简化(SARI: 44.9,可读性:2.9)和学习者参与度(TCR: 83.2%, DR: 11.4%, SSS: 4.3)方面表现优异。烧蚀研究和热图分析进一步揭示了系统各模块的互补价值。这些发现证明了将预测推理、个性化和交付优化相结合的有效性,以实现稳健的、以学习者为中心的无线教育系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信