Guaranteed Self-Triggered Control of Disturbed Systems: A Set Invariance Approach

IF 3.2 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Florian Pouthier, Sylvain Durand, Nicolas Marchand, Jonathan Dumon, Abdoullah Ndoye, Amaury Negre, Pierre Susbielle, Jose J. Castillo-Zamora, J. Fermi Guerrero Castellanos, Franck Ruffier
{"title":"Guaranteed Self-Triggered Control of Disturbed Systems: A Set Invariance Approach","authors":"Florian Pouthier,&nbsp;Sylvain Durand,&nbsp;Nicolas Marchand,&nbsp;Jonathan Dumon,&nbsp;Abdoullah Ndoye,&nbsp;Amaury Negre,&nbsp;Pierre Susbielle,&nbsp;Jose J. Castillo-Zamora,&nbsp;J. Fermi Guerrero Castellanos,&nbsp;Franck Ruffier","doi":"10.1002/rnc.8060","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This article introduces a novel self-triggering strategy designed to ensure the control of discrete-time linear systems with guaranteed stability, even in the presence of disturbances and uncertainties. This strategy aims to consistently maintain satisfaction of state constraints while accounting for the uncertainties in the system through a set-membership description. The self-triggering framework primarily relies on reachable and invariant sets. Reachable sets quantify the maximum deviation of the disturbed system from the predicted behavior, while an invariant set establishes triggering bounds for these reachable sets. This control method is intended to minimize the number of measurements required, thereby avoiding network bandwidth saturation. To validate the effectiveness of the proposed strategy, the experiments are conducted on an air extractor system, demonstrating a reduction in the number of measurement samples while ensuring stability and satisfying system state constraints.</p>\n </div>","PeriodicalId":50291,"journal":{"name":"International Journal of Robust and Nonlinear Control","volume":"35 15","pages":"6429-6443"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robust and Nonlinear Control","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rnc.8060","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This article introduces a novel self-triggering strategy designed to ensure the control of discrete-time linear systems with guaranteed stability, even in the presence of disturbances and uncertainties. This strategy aims to consistently maintain satisfaction of state constraints while accounting for the uncertainties in the system through a set-membership description. The self-triggering framework primarily relies on reachable and invariant sets. Reachable sets quantify the maximum deviation of the disturbed system from the predicted behavior, while an invariant set establishes triggering bounds for these reachable sets. This control method is intended to minimize the number of measurements required, thereby avoiding network bandwidth saturation. To validate the effectiveness of the proposed strategy, the experiments are conducted on an air extractor system, demonstrating a reduction in the number of measurement samples while ensuring stability and satisfying system state constraints.

扰动系统的保证自触发控制:一种集不变性方法
本文介绍了一种新颖的自触发策略,用于保证在存在干扰和不确定性的情况下,离散线性系统的控制具有保证的稳定性。该策略旨在通过集隶属描述来考虑系统中的不确定性,同时始终保持状态约束的满足。自触发框架主要依赖于可达集和不变集。可达集量化了扰动系统与预测行为的最大偏差,而不变集为这些可达集建立了触发界。这种控制方法旨在尽量减少所需的测量次数,从而避免网络带宽饱和。为了验证所提出策略的有效性,在空气提取系统上进行了实验,证明在保证稳定性和满足系统状态约束的同时减少了测量样本的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Robust and Nonlinear Control
International Journal of Robust and Nonlinear Control 工程技术-工程:电子与电气
CiteScore
6.70
自引率
20.50%
发文量
505
审稿时长
2.7 months
期刊介绍: Papers that do not include an element of robust or nonlinear control and estimation theory will not be considered by the journal, and all papers will be expected to include significant novel content. The focus of the journal is on model based control design approaches rather than heuristic or rule based methods. Papers on neural networks will have to be of exceptional novelty to be considered for the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信