Solution of Linear Damped Fractional Wave Equation on Triebel–Lizorkin Spaces

IF 0.9 3区 数学 Q2 MATHEMATICS
Meizhong Wang, Jiecheng Chen, Dashan Fan, Ziyao Liu
{"title":"Solution of Linear Damped Fractional Wave Equation on Triebel–Lizorkin Spaces","authors":"Meizhong Wang,&nbsp;Jiecheng Chen,&nbsp;Dashan Fan,&nbsp;Ziyao Liu","doi":"10.1007/s10114-025-3294-3","DOIUrl":null,"url":null,"abstract":"<div><p>In the article we study the solution <i>u</i>(<i>x, t</i>) of the Cauchy problem of linear damped fractional wave equation. We prove that <i>u</i>(<i>x, t</i>) has some sharp boundedness estimates on the Triebel–Lizorkin space. The proof of the necessity part is based on obtaining the precise asymptotic forms of the kernels of operators <span>\\({\\rm e}^{-t} \\cosh(t{\\sqrt L})\\)</span> and <span>\\({\\rm e}^{-t} {{\\sinh(t{\\sqrt L})} \\over {\\sqrt L}}\\)</span> with <i>L</i> = 1 − ∣Δ∣<sup><i>α</i></sup>, where Δ is the Laplacian, as well as the method of stationary phase. Additionally, we study the Riesz mean of the solution and show its convergence in the Triebel–Lizorkin space norm.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"41 7","pages":"1807 - 1831"},"PeriodicalIF":0.9000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-025-3294-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the article we study the solution u(x, t) of the Cauchy problem of linear damped fractional wave equation. We prove that u(x, t) has some sharp boundedness estimates on the Triebel–Lizorkin space. The proof of the necessity part is based on obtaining the precise asymptotic forms of the kernels of operators \({\rm e}^{-t} \cosh(t{\sqrt L})\) and \({\rm e}^{-t} {{\sinh(t{\sqrt L})} \over {\sqrt L}}\) with L = 1 − ∣Δ∣α, where Δ is the Laplacian, as well as the method of stationary phase. Additionally, we study the Riesz mean of the solution and show its convergence in the Triebel–Lizorkin space norm.

triiebel - lizorkin空间上线性阻尼分数阶波动方程的解
本文研究了线性阻尼分数阶波动方程Cauchy问题的解u(x, t)。证明了u(x, t)在triiebel - lizorkin空间上具有明显的有界性估计。必要部分的证明是基于得到L = 1−Δ∣α时算子\({\rm e}^{-t} \cosh(t{\sqrt L})\)和\({\rm e}^{-t} {{\sinh(t{\sqrt L})} \over {\sqrt L}}\)核的精确渐近形式,其中Δ为拉普拉斯算子,以及定相法。此外,我们研究了解的Riesz均值,并证明了它在triiebel - lizorkin空间范数上的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信