Scattering for the Non-Radial Focusing Inhomogeneous Nonlinear Schrödinger–Choquard Equation

IF 0.9 3区 数学 Q2 MATHEMATICS
Chengbin Xu
{"title":"Scattering for the Non-Radial Focusing Inhomogeneous Nonlinear Schrödinger–Choquard Equation","authors":"Chengbin Xu","doi":"10.1007/s10114-025-4015-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the long-time behavior of global solutions to the Schrödinger–Choquard equation </p><div><div><span>$${\\rm{i}}{\\partial _t}u + \\Delta u = - ( {{I_\\alpha } * {{\\vert \\cdot \\vert}^b}{{\\vert u \\vert}^p}} ){\\vert \\cdot \\vert^b}{\\vert u \\vert^{p - 2}}u.$$</span></div></div><p>Inspired by Murphy who gave a simple proof of scattering for the non-radial INLS, we find that the inhomogeneous term ∣<i>x</i>∣<sup><i>b</i></sup> can replace the radial Sobolev embedding theorem, which allows us to prove scattering theory below the ground state for the intercritical case in energy space without radial assumption.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"41 7","pages":"1891 - 1905"},"PeriodicalIF":0.9000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-025-4015-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the long-time behavior of global solutions to the Schrödinger–Choquard equation

$${\rm{i}}{\partial _t}u + \Delta u = - ( {{I_\alpha } * {{\vert \cdot \vert}^b}{{\vert u \vert}^p}} ){\vert \cdot \vert^b}{\vert u \vert^{p - 2}}u.$$

Inspired by Murphy who gave a simple proof of scattering for the non-radial INLS, we find that the inhomogeneous term ∣xb can replace the radial Sobolev embedding theorem, which allows us to prove scattering theory below the ground state for the intercritical case in energy space without radial assumption.

非径向聚焦非齐次非线性Schrödinger-Choquard方程的散射
本文研究了Schrödinger-Choquard方程$${\rm{i}}{\partial _t}u + \Delta u = - ( {{I_\alpha } * {{\vert \cdot \vert}^b}{{\vert u \vert}^p}} ){\vert \cdot \vert^b}{\vert u \vert^{p - 2}}u.$$全局解的长期行为。受Murphy给出非径向INLS散射的简单证明的启发,我们发现非齐次项∣x∣b可以代替径向Sobolev嵌入定理,这使得我们可以证明临界间情况下能量空间中基态以下的散射理论,而不需要径向假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信