Enhanced inverted transformer: advancing variate token encoding and blending for time series forecasting

IF 3.5 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xin-Yi Li, Yu-Bin Yang
{"title":"Enhanced inverted transformer: advancing variate token encoding and blending for time series forecasting","authors":"Xin-Yi Li,&nbsp;Yu-Bin Yang","doi":"10.1007/s10489-025-06886-4","DOIUrl":null,"url":null,"abstract":"<div><p>Recent advancements in channel-dependent Transformer-based forecasters highlight the efficacy of variate tokenization for time series forecasting. Despite this progress, challenges remain in handling complex time series. The vanilla Transformer, while effective in certain scenarios, faces limitations in addressing intricate cross-variate interactions and diverse temporal patterns. This paper presents the Enhanced Inverted Transformer (EiT for short), enhancing standard Transformer blocks for advanced modeling and blending of variate tokens. EiT incorporates three key innovations: First, a hybrid multi-patch attention mechanism that adaptively fuses global and local attention maps, capturing both stable and volatile correlations to mitigate overfitting and enrich inter-channel communication. Second, a multi-head feed-forward network with specialized heads for various temporal patterns, enhancing parameter efficiency and contributing to robust multivariate predictions. Third, paired channel normalization applied to each layer, preserving crucial channel-specific statistics and boosting forecasting performance. By integrating these innovations, EiT effectively overcomes limitations and unlocks the potential of variate tokens for accurate and robust multivariate time series forecasting. Extensive evaluations demonstrate that EiT achieves state-of-the-art (SOTA) performance, surpassing the previous method, the inverted Transformer, by an average of 4.4% in Mean Squared Error (MSE) and 3.4% in Mean Absolute Error (MAE) across five challenging long-term forecasting datasets.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 15","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06886-4","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in channel-dependent Transformer-based forecasters highlight the efficacy of variate tokenization for time series forecasting. Despite this progress, challenges remain in handling complex time series. The vanilla Transformer, while effective in certain scenarios, faces limitations in addressing intricate cross-variate interactions and diverse temporal patterns. This paper presents the Enhanced Inverted Transformer (EiT for short), enhancing standard Transformer blocks for advanced modeling and blending of variate tokens. EiT incorporates three key innovations: First, a hybrid multi-patch attention mechanism that adaptively fuses global and local attention maps, capturing both stable and volatile correlations to mitigate overfitting and enrich inter-channel communication. Second, a multi-head feed-forward network with specialized heads for various temporal patterns, enhancing parameter efficiency and contributing to robust multivariate predictions. Third, paired channel normalization applied to each layer, preserving crucial channel-specific statistics and boosting forecasting performance. By integrating these innovations, EiT effectively overcomes limitations and unlocks the potential of variate tokens for accurate and robust multivariate time series forecasting. Extensive evaluations demonstrate that EiT achieves state-of-the-art (SOTA) performance, surpassing the previous method, the inverted Transformer, by an average of 4.4% in Mean Squared Error (MSE) and 3.4% in Mean Absolute Error (MAE) across five challenging long-term forecasting datasets.

增强的反向变压器:用于时间序列预测的改进变量标记编码和混合
基于通道相关变压器的预测器的最新进展突出了变量标记化对时间序列预测的有效性。尽管取得了这些进展,但在处理复杂时间序列方面仍然存在挑战。香草Transformer虽然在某些场景中有效,但在处理复杂的跨变量交互和不同的时间模式方面面临限制。本文提出了增强的反向变压器(Enhanced Inverted Transformer,简称EiT),增强了标准的Transformer块,用于高级建模和混合变量令牌。EiT包含三个关键创新:首先,混合多补丁注意机制,自适应融合全局和局部注意图,捕获稳定和不稳定的相关性,以减轻过拟合并丰富通道间通信。其次,一个具有不同时间模式的专用头部的多头前馈网络,提高了参数效率并有助于鲁棒的多元预测。第三,将配对信道归一化应用于每一层,保留关键的信道特定统计数据并提高预测性能。通过整合这些创新,EiT有效地克服了限制,并释放了变量令牌的潜力,以实现准确和稳健的多变量时间序列预测。广泛的评估表明,EiT达到了最先进的(SOTA)性能,在五个具有挑战性的长期预测数据集上,其均方误差(MSE)平均为4.4%,平均绝对误差(MAE)平均为3.4%,超过了之前的方法(倒置变压器)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信