Existence of Higher Degree Minimizers in the Magnetic Skyrmion Problem

IF 2.4 1区 数学 Q1 MATHEMATICS, APPLIED
Cyrill B. Muratov, Theresa M. Simon, Valeriy V. Slastikov
{"title":"Existence of Higher Degree Minimizers in the Magnetic Skyrmion Problem","authors":"Cyrill B. Muratov,&nbsp;Theresa M. Simon,&nbsp;Valeriy V. Slastikov","doi":"10.1007/s00205-025-02131-x","DOIUrl":null,"url":null,"abstract":"<div><p>We demonstrate the existence of topologically nontrivial energy minimizing maps of a given positive degree from bounded domains in the plane to <span>\\({\\mathbb {S}}^2\\)</span> in a variational model describing magnetizations in ultrathin ferromagnetic films with Dzyaloshinskii–Moriya interaction. Our strategy is to insert tiny truncated Belavin–Polyakov profiles in carefully chosen locations of lower degree objects such that the total energy increase lies strictly below the expected Dirichlet energy contribution, ruling out loss of degree in the limits of minimizing sequences. The argument requires that the domain be either sufficiently large or sufficiently slender to accommodate a prescribed degree. We also show that these higher degree minimizers concentrate on point-like skyrmionic configurations in a suitable parameter regime.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"249 5","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-025-02131-x","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We demonstrate the existence of topologically nontrivial energy minimizing maps of a given positive degree from bounded domains in the plane to \({\mathbb {S}}^2\) in a variational model describing magnetizations in ultrathin ferromagnetic films with Dzyaloshinskii–Moriya interaction. Our strategy is to insert tiny truncated Belavin–Polyakov profiles in carefully chosen locations of lower degree objects such that the total energy increase lies strictly below the expected Dirichlet energy contribution, ruling out loss of degree in the limits of minimizing sequences. The argument requires that the domain be either sufficiently large or sufficiently slender to accommodate a prescribed degree. We also show that these higher degree minimizers concentrate on point-like skyrmionic configurations in a suitable parameter regime.

磁Skyrmion问题中高次极小值的存在性
在描述具有Dzyaloshinskii-Moriya相互作用的超薄铁磁薄膜磁化的变分模型中,我们证明了从平面上有界域到\({\mathbb {S}}^2\)的给定正度的拓扑非平凡能量最小化映射的存在性。我们的策略是在低阶目标的精心选择的位置插入微小的截断Belavin-Polyakov剖面,使总能量增加严格低于预期的Dirichlet能量贡献,从而排除了最小化序列极限中的度损失。该论点要求该领域要么足够大,要么足够细,以适应规定的程度。我们也证明了这些高阶的最小化集中在一个合适的参数范围内的点状天元构型上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信