A unified surrogate model for enhanced photon shielding through an all-natural-element multi-group flux dataset

IF 2.3 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
Junyi Chen, Chenghao Cao, Shaoning Shen, Tianyuan Guo, Jingang Liang
{"title":"A unified surrogate model for enhanced photon shielding through an all-natural-element multi-group flux dataset","authors":"Junyi Chen,&nbsp;Chenghao Cao,&nbsp;Shaoning Shen,&nbsp;Tianyuan Guo,&nbsp;Jingang Liang","doi":"10.1016/j.anucene.2025.111887","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient gamma shielding analysis is vital for nuclear safety. However, traditional Point Kernel approaches relying on outdated ANSI databases face significant limitations in providing comprehensive and fine-grained shielding analysis. This study addresses this by creating a detailed multi-group photon flux dataset for 92 nuclides via Monte Carlo simulations. The dataset’s complexity renders traditional modeling techniques ineffective. We introduce a novel generative-reconstruction surrogate model, combining a conditional Generative Adversarial Network (cGAN) and a fine-tuned UNet, both enhanced with self-attention mechanisms. This model predicts complex multi-group photon shielding parameter fields. Verification shows the model accurately predicts parameter fields, with 95% of samples achieving an average relative deviation below 20%. Predicted relative flux, converted to buildup factors, aligns well with Monte Carlo truth and ANSI values, confirming reliability and improved conservatism. This approach offers an efficient, accurate alternative for photon shielding calculations, proposing a new approach for data and computation.</div></div>","PeriodicalId":8006,"journal":{"name":"Annals of Nuclear Energy","volume":"226 ","pages":"Article 111887"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306454925007042","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient gamma shielding analysis is vital for nuclear safety. However, traditional Point Kernel approaches relying on outdated ANSI databases face significant limitations in providing comprehensive and fine-grained shielding analysis. This study addresses this by creating a detailed multi-group photon flux dataset for 92 nuclides via Monte Carlo simulations. The dataset’s complexity renders traditional modeling techniques ineffective. We introduce a novel generative-reconstruction surrogate model, combining a conditional Generative Adversarial Network (cGAN) and a fine-tuned UNet, both enhanced with self-attention mechanisms. This model predicts complex multi-group photon shielding parameter fields. Verification shows the model accurately predicts parameter fields, with 95% of samples achieving an average relative deviation below 20%. Predicted relative flux, converted to buildup factors, aligns well with Monte Carlo truth and ANSI values, confirming reliability and improved conservatism. This approach offers an efficient, accurate alternative for photon shielding calculations, proposing a new approach for data and computation.
基于全自然元素多群通量数据集的增强光子屏蔽统一代理模型
有效的伽马屏蔽分析对核安全至关重要。然而,依赖于过时的ANSI数据库的传统Point Kernel方法在提供全面和细粒度屏蔽分析方面面临重大限制。本研究通过蒙特卡罗模拟建立了92种核素的详细多群光子通量数据集,解决了这一问题。数据集的复杂性使得传统的建模技术无效。我们介绍了一种新的生成重建代理模型,结合了条件生成对抗网络(cGAN)和微调UNet,两者都增强了自注意机制。该模型预测了复杂的多群光子屏蔽参数场。验证表明,该模型预测参数字段准确,95%的样本平均相对偏差在20%以下。预测的相对通量,转换为累积因子,与蒙特卡罗真理和ANSI值很好地一致,确认了可靠性和改进的保守性。该方法为光子屏蔽计算提供了一种高效、准确的替代方法,为数据和计算提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Nuclear Energy
Annals of Nuclear Energy 工程技术-核科学技术
CiteScore
4.30
自引率
21.10%
发文量
632
审稿时长
7.3 months
期刊介绍: Annals of Nuclear Energy provides an international medium for the communication of original research, ideas and developments in all areas of the field of nuclear energy science and technology. Its scope embraces nuclear fuel reserves, fuel cycles and cost, materials, processing, system and component technology (fission only), design and optimization, direct conversion of nuclear energy sources, environmental control, reactor physics, heat transfer and fluid dynamics, structural analysis, fuel management, future developments, nuclear fuel and safety, nuclear aerosol, neutron physics, computer technology (both software and hardware), risk assessment, radioactive waste disposal and reactor thermal hydraulics. Papers submitted to Annals need to demonstrate a clear link to nuclear power generation/nuclear engineering. Papers which deal with pure nuclear physics, pure health physics, imaging, or attenuation and shielding properties of concretes and various geological materials are not within the scope of the journal. Also, papers that deal with policy or economics are not within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信