Artificial neural network-assisted study on thermohydrodynamic behavior of tetrahybrid nanofluids in a porous stretching cylinder

IF 3.8 2区 化学 Q2 AUTOMATION & CONTROL SYSTEMS
Pooja Devi, Bhuvaneshvar Kumar
{"title":"Artificial neural network-assisted study on thermohydrodynamic behavior of tetrahybrid nanofluids in a porous stretching cylinder","authors":"Pooja Devi,&nbsp;Bhuvaneshvar Kumar","doi":"10.1016/j.chemolab.2025.105537","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the flow dynamics and thermal characteristics of a tetrahybrid nanofluid over a stretching cylinder, considering the effects of a magnetic field and internal heat generation. Two distinct tetrahybrid nanofluids are examined for the comparative analysis of temperature, pressure, velocity distributions, skin friction, and heat transfer performance: one composed of Ag+SiO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>+TiO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>+Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> suspended in kerosene oil, and the other consisting of Au+CuO+Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>+ Multi-Walled Carbon Nanotubes (<span><math><mrow><mi>M</mi><mi>W</mi><mi>C</mi><mi>N</mi><mi>T</mi><mi>s</mi></mrow></math></span>) dispersed in water. The governing equations are solved numerically using the fourth-order Runge–Kutta method coupled with a shooting strategy and artificial neural network (ANN). Parametric studies revealed that the Au+ CuO+Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>+Multi-Walled Carbon Nanotubes (<span><math><mrow><mi>M</mi><mi>W</mi><mi>C</mi><mi>N</mi><mi>T</mi><mi>s</mi></mrow></math></span>) nanofluid exhibited superior thermal performance, characterized by higher Nusselt numbers, while the Ag+SiO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>+TiO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>+Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> nanofluid provided enhanced momentum transport and higher velocity profiles. Au+CuO+Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>+Multi-Walled Carbon Nanotubes (<span><math><mrow><mi>M</mi><mi>W</mi><mi>C</mi><mi>N</mi><mi>T</mi><mi>s</mi></mrow></math></span>) shows stronger pressure resistance near the surface, while Ag+SiO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>+TiO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>+Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> yields greater skin friction due to higher effective viscosity. An artificial neural network (ANN) was trained using Bayesian regularization to accurately predict skin friction and Nusselt number values. The Au+CuO+Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>+Multi-Walled Carbon Nanotubes (<span><math><mrow><mi>M</mi><mi>W</mi><mi>C</mi><mi>N</mi><mi>T</mi><mi>s</mi></mrow></math></span>) nanofluid is well-suited for high-efficiency thermal management systems, including electronic cooling, solar collectors, and magnetic heat delivery. In contrast, Ag+SiO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>+TiO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>+ Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> nanofluid offers advantages in polymer extrusion, coating, and lubrication processes. The inclusion of porous media effects further broadens applicability to geothermal systems, packed-bed reactors, and smart heat exchangers. ANN predictions closely match the numerical results with correlation coefficients above 0.9999, demonstrating its reliability as a surrogate model.</div></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"267 ","pages":"Article 105537"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743925002229","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the flow dynamics and thermal characteristics of a tetrahybrid nanofluid over a stretching cylinder, considering the effects of a magnetic field and internal heat generation. Two distinct tetrahybrid nanofluids are examined for the comparative analysis of temperature, pressure, velocity distributions, skin friction, and heat transfer performance: one composed of Ag+SiO2+TiO2+Al2O3 suspended in kerosene oil, and the other consisting of Au+CuO+Fe3O4+ Multi-Walled Carbon Nanotubes (MWCNTs) dispersed in water. The governing equations are solved numerically using the fourth-order Runge–Kutta method coupled with a shooting strategy and artificial neural network (ANN). Parametric studies revealed that the Au+ CuO+Fe3O4+Multi-Walled Carbon Nanotubes (MWCNTs) nanofluid exhibited superior thermal performance, characterized by higher Nusselt numbers, while the Ag+SiO2+TiO2+Al2O3 nanofluid provided enhanced momentum transport and higher velocity profiles. Au+CuO+Fe3O4+Multi-Walled Carbon Nanotubes (MWCNTs) shows stronger pressure resistance near the surface, while Ag+SiO2+TiO2+Al2O3 yields greater skin friction due to higher effective viscosity. An artificial neural network (ANN) was trained using Bayesian regularization to accurately predict skin friction and Nusselt number values. The Au+CuO+Fe3O4+Multi-Walled Carbon Nanotubes (MWCNTs) nanofluid is well-suited for high-efficiency thermal management systems, including electronic cooling, solar collectors, and magnetic heat delivery. In contrast, Ag+SiO2+TiO2+ Al2O3 nanofluid offers advantages in polymer extrusion, coating, and lubrication processes. The inclusion of porous media effects further broadens applicability to geothermal systems, packed-bed reactors, and smart heat exchangers. ANN predictions closely match the numerical results with correlation coefficients above 0.9999, demonstrating its reliability as a surrogate model.
人工神经网络辅助下多孔拉伸圆柱体中四杂化纳米流体热流体动力学行为的研究
本研究探讨了四杂交纳米流体在拉伸圆柱体上的流动动力学和热特性,考虑了磁场和内部热产生的影响。对两种不同的四杂化纳米流体进行了温度、压力、速度分布、表面摩擦和传热性能的对比分析:一种由悬浮在煤油中的Ag+SiO2+TiO2+Al2O3组成,另一种由分散在水中的Au+CuO+Fe3O4+多壁碳纳米管(MWCNTs)组成。采用四阶龙格-库塔法结合射击策略和人工神经网络对控制方程进行了数值求解。参数研究表明,Au+ CuO+Fe3O4+多壁碳纳米管(MWCNTs)纳米流体表现出优异的热性能,具有较高的努塞尔数,而Ag+SiO2+TiO2+Al2O3纳米流体具有增强的动量传递和更高的速度分布。Au+CuO+Fe3O4+多壁碳纳米管(MWCNTs)在近表面表现出更强的耐压性,而Ag+SiO2+TiO2+Al2O3由于更高的有效粘度而产生更大的表面摩擦。采用贝叶斯正则化方法训练人工神经网络,准确预测皮肤摩擦和努塞尔数。Au+CuO+Fe3O4+多壁碳纳米管(MWCNTs)纳米流体非常适合于高效率的热管理系统,包括电子冷却,太阳能集热器和磁热输送。相比之下,Ag+SiO2+TiO2+ Al2O3纳米流体在聚合物挤出、涂层和润滑过程中具有优势。多孔介质效应的加入进一步扩大了地热系统、填料床反应器和智能热交换器的适用性。人工神经网络预测结果与数值结果吻合较好,相关系数均在0.9999以上,证明了其作为替代模型的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.50
自引率
7.70%
发文量
169
审稿时长
3.4 months
期刊介绍: Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines. Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data. The journal deals with the following topics: 1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.) 2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered. 3) Development of new software that provides novel tools or truly advances the use of chemometrical methods. 4) Well characterized data sets to test performance for the new methods and software. The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信