{"title":"Artificial neural network-assisted study on thermohydrodynamic behavior of tetrahybrid nanofluids in a porous stretching cylinder","authors":"Pooja Devi, Bhuvaneshvar Kumar","doi":"10.1016/j.chemolab.2025.105537","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the flow dynamics and thermal characteristics of a tetrahybrid nanofluid over a stretching cylinder, considering the effects of a magnetic field and internal heat generation. Two distinct tetrahybrid nanofluids are examined for the comparative analysis of temperature, pressure, velocity distributions, skin friction, and heat transfer performance: one composed of Ag+SiO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>+TiO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>+Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> suspended in kerosene oil, and the other consisting of Au+CuO+Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>+ Multi-Walled Carbon Nanotubes (<span><math><mrow><mi>M</mi><mi>W</mi><mi>C</mi><mi>N</mi><mi>T</mi><mi>s</mi></mrow></math></span>) dispersed in water. The governing equations are solved numerically using the fourth-order Runge–Kutta method coupled with a shooting strategy and artificial neural network (ANN). Parametric studies revealed that the Au+ CuO+Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>+Multi-Walled Carbon Nanotubes (<span><math><mrow><mi>M</mi><mi>W</mi><mi>C</mi><mi>N</mi><mi>T</mi><mi>s</mi></mrow></math></span>) nanofluid exhibited superior thermal performance, characterized by higher Nusselt numbers, while the Ag+SiO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>+TiO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>+Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> nanofluid provided enhanced momentum transport and higher velocity profiles. Au+CuO+Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>+Multi-Walled Carbon Nanotubes (<span><math><mrow><mi>M</mi><mi>W</mi><mi>C</mi><mi>N</mi><mi>T</mi><mi>s</mi></mrow></math></span>) shows stronger pressure resistance near the surface, while Ag+SiO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>+TiO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>+Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> yields greater skin friction due to higher effective viscosity. An artificial neural network (ANN) was trained using Bayesian regularization to accurately predict skin friction and Nusselt number values. The Au+CuO+Fe<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>4</mn></mrow></msub></math></span>+Multi-Walled Carbon Nanotubes (<span><math><mrow><mi>M</mi><mi>W</mi><mi>C</mi><mi>N</mi><mi>T</mi><mi>s</mi></mrow></math></span>) nanofluid is well-suited for high-efficiency thermal management systems, including electronic cooling, solar collectors, and magnetic heat delivery. In contrast, Ag+SiO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>+TiO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>+ Al<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> nanofluid offers advantages in polymer extrusion, coating, and lubrication processes. The inclusion of porous media effects further broadens applicability to geothermal systems, packed-bed reactors, and smart heat exchangers. ANN predictions closely match the numerical results with correlation coefficients above 0.9999, demonstrating its reliability as a surrogate model.</div></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"267 ","pages":"Article 105537"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743925002229","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the flow dynamics and thermal characteristics of a tetrahybrid nanofluid over a stretching cylinder, considering the effects of a magnetic field and internal heat generation. Two distinct tetrahybrid nanofluids are examined for the comparative analysis of temperature, pressure, velocity distributions, skin friction, and heat transfer performance: one composed of Ag+SiO+TiO+AlO suspended in kerosene oil, and the other consisting of Au+CuO+FeO+ Multi-Walled Carbon Nanotubes () dispersed in water. The governing equations are solved numerically using the fourth-order Runge–Kutta method coupled with a shooting strategy and artificial neural network (ANN). Parametric studies revealed that the Au+ CuO+FeO+Multi-Walled Carbon Nanotubes () nanofluid exhibited superior thermal performance, characterized by higher Nusselt numbers, while the Ag+SiO+TiO+AlO nanofluid provided enhanced momentum transport and higher velocity profiles. Au+CuO+FeO+Multi-Walled Carbon Nanotubes () shows stronger pressure resistance near the surface, while Ag+SiO+TiO+AlO yields greater skin friction due to higher effective viscosity. An artificial neural network (ANN) was trained using Bayesian regularization to accurately predict skin friction and Nusselt number values. The Au+CuO+FeO+Multi-Walled Carbon Nanotubes () nanofluid is well-suited for high-efficiency thermal management systems, including electronic cooling, solar collectors, and magnetic heat delivery. In contrast, Ag+SiO+TiO+ AlO nanofluid offers advantages in polymer extrusion, coating, and lubrication processes. The inclusion of porous media effects further broadens applicability to geothermal systems, packed-bed reactors, and smart heat exchangers. ANN predictions closely match the numerical results with correlation coefficients above 0.9999, demonstrating its reliability as a surrogate model.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.