Approximation of MWIS on geometric intersection graphs

IF 0.7 4区 计算机科学 Q4 MATHEMATICS
C.R. Subramanian
{"title":"Approximation of MWIS on geometric intersection graphs","authors":"C.R. Subramanian","doi":"10.1016/j.comgeo.2025.102228","DOIUrl":null,"url":null,"abstract":"<div><div>We present a generic formulation of an algorithmic paradigm for approximating maximum weighted independent sets (MWIS) in arbitrary vertex weighted graphs. A special case of this paradigm has been proposed earlier for geometric intersection graphs. Here, we propose and analyse a much more general formulation. As part of this formulation, we introduce a new graph parameter which plays a role in bounding the approximation factor of the algorithms. By applying this paradigm to intersection graph classes of specific types of geometric objects, we obtain efficient algorithms which approximate a MWIS within <span><math><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></mrow><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span> multiplicative factors. It is also shown that the same approach can be generalised to obtain efficient approximation algorithms for computing an optimal weight <span><math><mi>P</mi></math></span>-subgraphs where <span><math><mi>P</mi></math></span> is a suitable hereditary property.</div><div>Applying our paradigm, we establish, for every <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>p</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>]</mo></math></span>, that MWIS of the intersection graph of a given collection of weighted <em>k</em>-dimensional <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> spheres (having a common radius) can be efficiently approximated within a multiplicative factor of <span><math><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>. The running time can be brought down to <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo><mo>)</mo></math></span> at the cost of increasing the approximation guarantee to <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>p</mi></mrow></msub><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>, for some constant <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>k</mi></mrow></msub></math></span> depending only on <em>p</em> and <em>k</em>. It is also shown that the above MWIS-approximation results can be extended to MWIS-approximation over the more general intersection graphs of finite collections of connected, full-dimensional and centrally-symmetric bodies in <em>k</em>-dimensional, <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-spaces, for every <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>]</mo></math></span>.</div><div>In a related development, we also establish the following graph theoretic result which will be of independent interest: For every <span><math><mi>p</mi><mo>∈</mo><mo>[</mo><mn>2</mn><mo>,</mo><mo>∞</mo><mo>]</mo></math></span> and for every <em>G</em>, there is a <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span> such that <em>G</em> is isomorphic to the IG of a collection of <em>k</em>-dimensional <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-spheres of a common radius. The minimum value of such a <em>k</em> is referred to as the <em>p</em>-sphericity of <em>G</em>.</div><div>Also, applying our paradigm, one obtains for every <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span>, an efficient algorithm which, given a collection <span><math><mi>B</mi></math></span> of weighted <em>k</em>-dimensional axis-parallel boxes, finds a <span><math><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>-approximation to MWIS. For the unweighted case, the running time can be improved to <span><math><mi>O</mi><mrow><mo>(</mo><mi>n</mi><msup><mrow><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></math></span>.</div></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"132 ","pages":"Article 102228"},"PeriodicalIF":0.7000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772125000665","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We present a generic formulation of an algorithmic paradigm for approximating maximum weighted independent sets (MWIS) in arbitrary vertex weighted graphs. A special case of this paradigm has been proposed earlier for geometric intersection graphs. Here, we propose and analyse a much more general formulation. As part of this formulation, we introduce a new graph parameter which plays a role in bounding the approximation factor of the algorithms. By applying this paradigm to intersection graph classes of specific types of geometric objects, we obtain efficient algorithms which approximate a MWIS within (logn)O(1) multiplicative factors. It is also shown that the same approach can be generalised to obtain efficient approximation algorithms for computing an optimal weight P-subgraphs where P is a suitable hereditary property.
Applying our paradigm, we establish, for every k2 and p[1,], that MWIS of the intersection graph of a given collection of weighted k-dimensional Lp spheres (having a common radius) can be efficiently approximated within a multiplicative factor of (logn)k1. The running time can be brought down to O(n(logn)) at the cost of increasing the approximation guarantee to ck,p(logn)k1, for some constant cp,k depending only on p and k. It is also shown that the above MWIS-approximation results can be extended to MWIS-approximation over the more general intersection graphs of finite collections of connected, full-dimensional and centrally-symmetric bodies in k-dimensional, Lp-spaces, for every k2 and p(0,].
In a related development, we also establish the following graph theoretic result which will be of independent interest: For every p[2,] and for every G, there is a k1 such that G is isomorphic to the IG of a collection of k-dimensional Lp-spheres of a common radius. The minimum value of such a k is referred to as the p-sphericity of G.
Also, applying our paradigm, one obtains for every k2, an efficient algorithm which, given a collection B of weighted k-dimensional axis-parallel boxes, finds a (logn)k1-approximation to MWIS. For the unweighted case, the running time can be improved to O(n(logn)2).
几何相交图上MWIS的逼近
我们提出了一种近似任意顶点加权图中最大加权独立集(MWIS)的算法范式的一般公式。这种范例的一个特例已经在前面的几何相交图中被提出。在这里,我们提出并分析一个更一般的公式。作为该公式的一部分,我们引入了一个新的图参数,它在约束算法的近似因子中起作用。通过将这种范式应用于特定类型几何对象的相交图类,我们获得了在(log log n)O(1)个乘法因子内近似MWIS的有效算法。同样的方法也可以推广到计算最优权P子图的有效近似算法,其中P是一个合适的遗传属性。应用我们的范例,我们建立,对于每k≥2且p∈[1,∞],一个给定的加权k维Lp球(具有公共半径)的集合的相交图的MWIS可以在(log ln n)k−1的乘法因子内有效地近似。运行时间可以降低到O(n(log log n)),代价是增加对ck,p(log n)k−1的近似保证,对于某些常数cp,k只依赖于p和k。还表明,对于k维lp空间中连通的全维中心对称体的有限集合的更一般的交图,对于每k≥2且p∈(0,∞),上述mwisi -近似结果可以推广到mwisi -近似。在相关的发展中,我们还建立了以下的图论结果,这将是一个独立的兴趣:对于每一个p∈[2,∞]和每一个G,存在一个k≥1使得G同构于一个公共半径的k维lp球集合的IG。这样一个k的最小值被称为g的p球度。此外,应用我们的范式,对于每k≥2,我们得到一个有效的算法,给定一个加权k维轴平行盒的集合B,找到一个(log log n)k−1逼近MWIS。对于未加权的情况,运行时间可以改进为O(n(log n)2)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信