An improved bound for the price of anarchy for related machine scheduling

IF 1.6 4区 数学 Q3 MATHEMATICS, APPLIED
André Berger, Arman Rouhani, Marc Schröder
{"title":"An improved bound for the price of anarchy for related machine scheduling","authors":"André Berger,&nbsp;Arman Rouhani,&nbsp;Marc Schröder","doi":"10.1016/j.disopt.2025.100911","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we introduce an improved upper bound for the efficiency of Nash equilibria in utilitarian scheduling games on related machines. The machines have varying speeds and adhere to the shortest processing time first policy. The goal of each job is to minimize its completion time, while the social objective is to minimize the sum of completion times. Our main finding establishes an upper bound of <span><math><mrow><mn>2</mn><mo>−</mo><mn>1</mn><mo>/</mo><mrow><mo>(</mo><mn>4</mn><mi>m</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> on the price of anarchy for the general case of <span><math><mi>m</mi></math></span> machines. We improve this bound to 3/2 for the case of two machines, and to <span><math><mrow><mn>2</mn><mo>−</mo><mn>1</mn><mo>/</mo><mrow><mo>(</mo><mn>2</mn><mspace></mspace><mi>m</mi><mo>)</mo></mrow></mrow></math></span> for the general case of <span><math><mi>m</mi></math></span> machines when the machines have divisible speeds, i.e., if the speed of each machine is divisible by the speed of any slower machine.</div></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"58 ","pages":"Article 100911"},"PeriodicalIF":1.6000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528625000349","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce an improved upper bound for the efficiency of Nash equilibria in utilitarian scheduling games on related machines. The machines have varying speeds and adhere to the shortest processing time first policy. The goal of each job is to minimize its completion time, while the social objective is to minimize the sum of completion times. Our main finding establishes an upper bound of 21/(4m2) on the price of anarchy for the general case of m machines. We improve this bound to 3/2 for the case of two machines, and to 21/(2m) for the general case of m machines when the machines have divisible speeds, i.e., if the speed of each machine is divisible by the speed of any slower machine.
相关机器调度的无政府状态代价的改进边界
本文引入了相关机器上功利调度对策纳什均衡效率的改进上界。机器有不同的速度,并坚持最短的处理时间优先的政策。每项工作的目标是使其完成时间最小化,而社会目标是使完成时间的总和最小化。我们的主要发现建立了m个机器的一般情况下无政府状态价格的上界为2−1/(4m−2)。对于两台机器的情况,我们将这个界限提高到3/2,对于m台机器的一般情况,当机器的速度可整除时,即,如果每台机器的速度可被任何较慢的机器的速度整除,则该界限提高到2 - 1/(2m)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Optimization
Discrete Optimization 管理科学-应用数学
CiteScore
2.10
自引率
9.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信