{"title":"Hierarchical Bayesian threshold excess model for real-time vehicle-based conflict prediction in dynamic traffic environ-ments","authors":"Léah Camarcat , Yuxiang Feng , Nicolette Formosa , Mohammed Quddus","doi":"10.1016/j.commtr.2025.100210","DOIUrl":null,"url":null,"abstract":"<div><div>Vehicle-based collision risk assessment methods often exhibit a tradeoff between simplifying assumptions in physics-based models and the interpretability challenges of learning algorithms. To tackle this, methods based on Extreme Value Theory (EVT) have gained momentum in recent years, but there is a lack of studies employing EVT for vehicle-based applications. This paper proposes a new, context-aware conflict prediction algorithm using a hierarchical Bayesian threshold excess model. Contextual traffic data are integrated with vehicle sensor data to improve the robustness and accuracy of the model. The feasibility of real-time deployment is also examined by optimising computational efficiency, leveraging several implementations of the Hamiltonian Monte Carlo No-U-Turn Solver (NUTS). The results demonstrate that including traffic covariates improves the model goodness-of-fit by 4.80% in terms of Deviance Information Criterion, and generalisability with a decrease of 1.36% in mean absolute error. However, partially pooled models, while enhancing goodness-of-fit, result in a reduction of generalisation capabilities. Additionally, the No-U-Turn Sampler compiled in JAX demonstrated sufficient performance for both online training and inference, thus making this methodology a feasible solution for real-time deployment in vehicle-based applications.</div></div>","PeriodicalId":100292,"journal":{"name":"Communications in Transportation Research","volume":"5 ","pages":"Article 100210"},"PeriodicalIF":14.5000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Transportation Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772424725000502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Vehicle-based collision risk assessment methods often exhibit a tradeoff between simplifying assumptions in physics-based models and the interpretability challenges of learning algorithms. To tackle this, methods based on Extreme Value Theory (EVT) have gained momentum in recent years, but there is a lack of studies employing EVT for vehicle-based applications. This paper proposes a new, context-aware conflict prediction algorithm using a hierarchical Bayesian threshold excess model. Contextual traffic data are integrated with vehicle sensor data to improve the robustness and accuracy of the model. The feasibility of real-time deployment is also examined by optimising computational efficiency, leveraging several implementations of the Hamiltonian Monte Carlo No-U-Turn Solver (NUTS). The results demonstrate that including traffic covariates improves the model goodness-of-fit by 4.80% in terms of Deviance Information Criterion, and generalisability with a decrease of 1.36% in mean absolute error. However, partially pooled models, while enhancing goodness-of-fit, result in a reduction of generalisation capabilities. Additionally, the No-U-Turn Sampler compiled in JAX demonstrated sufficient performance for both online training and inference, thus making this methodology a feasible solution for real-time deployment in vehicle-based applications.