Nonlinear bulk photocurrent probe Z2 topological phase transition in noncentrosymmetric materials

Debasis Dutta , Raihan Ahammed , Yingdong Wei , Xiaokai Pan , Xiaoshuang Chen , Lin Wang , Amit Agarwal
{"title":"Nonlinear bulk photocurrent probe Z2 topological phase transition in noncentrosymmetric materials","authors":"Debasis Dutta ,&nbsp;Raihan Ahammed ,&nbsp;Yingdong Wei ,&nbsp;Xiaokai Pan ,&nbsp;Xiaoshuang Chen ,&nbsp;Lin Wang ,&nbsp;Amit Agarwal","doi":"10.1016/j.mtquan.2025.100052","DOIUrl":null,"url":null,"abstract":"<div><div>Detecting topological phase transitions in bulk is challenging due to the limitations of surface-sensitive probes like ARPES. Here, we demonstrate that nonlinear bulk photocurrents, specifically shift and injection currents, serve as effective probes of <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> topological transitions in noncentrosymmetric materials. These photocurrents show a robust polarity reversal across the <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> phase transition, offering a direct optical signature that distinguishes strong topological phases from weak or trivial ones. This effect originates from a reorganization of key band geometric quantities, the Berry curvature and shift vector, on time-reversal-invariant momentum planes. Using a low-energy Dirac model, we trace this behavior to a band inversion in the time-reversal-invariant momentum plane that drives the topological transition. We validate these findings through tight-binding model for Bi<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>Te<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span> and first-principles calculations for ZrTe<span><math><msub><mrow></mrow><mrow><mn>5</mn></mrow></msub></math></span> and BiTeI, where the topological phase can be tuned by pressure or temperature. Our results establish nonlinear photocurrent as a sensitive and broadly applicable alternative probe of <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> topological phase transitions.</div></div>","PeriodicalId":100894,"journal":{"name":"Materials Today Quantum","volume":"8 ","pages":"Article 100052"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Quantum","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950257825000307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting topological phase transitions in bulk is challenging due to the limitations of surface-sensitive probes like ARPES. Here, we demonstrate that nonlinear bulk photocurrents, specifically shift and injection currents, serve as effective probes of Z2 topological transitions in noncentrosymmetric materials. These photocurrents show a robust polarity reversal across the Z2 phase transition, offering a direct optical signature that distinguishes strong topological phases from weak or trivial ones. This effect originates from a reorganization of key band geometric quantities, the Berry curvature and shift vector, on time-reversal-invariant momentum planes. Using a low-energy Dirac model, we trace this behavior to a band inversion in the time-reversal-invariant momentum plane that drives the topological transition. We validate these findings through tight-binding model for Bi2Te3 and first-principles calculations for ZrTe5 and BiTeI, where the topological phase can be tuned by pressure or temperature. Our results establish nonlinear photocurrent as a sensitive and broadly applicable alternative probe of Z2 topological phase transitions.
非中心对称材料中非线性体光电流探针Z2拓扑相变
由于表面敏感探针(如ARPES)的局限性,批量检测拓扑相变具有挑战性。在这里,我们证明了非线性体光电流,特别是移位和注入电流,可以作为非中心对称材料中Z2拓扑跃迁的有效探针。这些光电流在Z2相变中显示出强大的极性反转,提供了一个直接的光学特征,可以区分强拓扑相和弱拓扑相。这种效应源于时间逆不变动量平面上的关键频带几何量(Berry曲率和移位矢量)的重组。使用低能狄拉克模型,我们将这种行为追溯到驱动拓扑跃迁的时间逆不变动量平面中的能带反转。我们通过Bi2Te3的紧密结合模型和ZrTe5和BiTeI的第一性原理计算验证了这些发现,其中拓扑相可以通过压力或温度调节。我们的研究结果表明,非线性光电流是一种敏感的、广泛适用的Z2拓扑相变替代探针。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信