{"title":"A novel finite element method for simulating surface plasmon polaritons on complex graphene sheets","authors":"Jichun Li , Michael Neunteufel , Li Zhu","doi":"10.1016/j.jcp.2025.114372","DOIUrl":null,"url":null,"abstract":"<div><div>Surface plasmon polaritons (SPPs) are generated on the graphene surface, and provide a window into the nano-optical and electrodynamic response of their host material and its dielectric environment. An accurate simulation of SPPs presents several unique challenges, since SPPs often occur at complex interfaces between materials of different dielectric constants and appropriate boundary conditions at the graphene interfaces are crucial. Here we develop a simplified graphene model and propose a new finite element method accordingly. Stability for the continuous model is established, and extensive numerical results are presented to demonstrate that the new model can capture the SPPs very well for various complex graphene sheets.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"542 ","pages":"Article 114372"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125006540","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Surface plasmon polaritons (SPPs) are generated on the graphene surface, and provide a window into the nano-optical and electrodynamic response of their host material and its dielectric environment. An accurate simulation of SPPs presents several unique challenges, since SPPs often occur at complex interfaces between materials of different dielectric constants and appropriate boundary conditions at the graphene interfaces are crucial. Here we develop a simplified graphene model and propose a new finite element method accordingly. Stability for the continuous model is established, and extensive numerical results are presented to demonstrate that the new model can capture the SPPs very well for various complex graphene sheets.
期刊介绍:
Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries.
The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.