Hybridizable discontinuous Galerkin methods for coupled poro-viscoelastic and thermo-viscoelastic systems

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Salim Meddahi
{"title":"Hybridizable discontinuous Galerkin methods for coupled poro-viscoelastic and thermo-viscoelastic systems","authors":"Salim Meddahi","doi":"10.1016/j.jcp.2025.114368","DOIUrl":null,"url":null,"abstract":"<div><div>This article presents a unified mathematical framework for modeling coupled poro-viscoelastic and thermo-viscoelastic phenomena, formulated as a system of first-order in time partial differential equations. The model describes the evolution of solid velocity, elastic and viscous stress tensors, and additional fields related to either fluid pressure or temperature, depending on the physical context. We develop a hybridizable discontinuous Galerkin method for the numerical approximation of this coupled system, providing a high-order, stable discretization that efficiently handles the multiphysics nature of the problem. We establish stability analysis and derive optimal <span><math><mrow><mi>h</mi><mi>p</mi></mrow></math></span>-error estimates for the semi-discrete formulation. The theoretical convergence rates are validated through comprehensive numerical experiments, demonstrating the method’s accuracy and robustness across various test cases, including wave propagation in heterogeneous media with mixed viscoelastic properties.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"542 ","pages":"Article 114368"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125006503","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a unified mathematical framework for modeling coupled poro-viscoelastic and thermo-viscoelastic phenomena, formulated as a system of first-order in time partial differential equations. The model describes the evolution of solid velocity, elastic and viscous stress tensors, and additional fields related to either fluid pressure or temperature, depending on the physical context. We develop a hybridizable discontinuous Galerkin method for the numerical approximation of this coupled system, providing a high-order, stable discretization that efficiently handles the multiphysics nature of the problem. We establish stability analysis and derive optimal hp-error estimates for the semi-discrete formulation. The theoretical convergence rates are validated through comprehensive numerical experiments, demonstrating the method’s accuracy and robustness across various test cases, including wave propagation in heterogeneous media with mixed viscoelastic properties.
多孔粘弹性和热粘弹性耦合系统的杂化不连续Galerkin方法
本文提出了一个统一的数学框架来模拟耦合的孔粘弹性和热粘弹性现象,并将其表述为一阶时间偏微分方程系统。该模型描述了固体速度、弹性和粘性应力张量以及与流体压力或温度相关的附加场的演变,具体取决于物理环境。我们开发了一种可杂交的不连续伽辽金方法用于该耦合系统的数值逼近,提供了一种高阶、稳定的离散化方法,有效地处理了该问题的多物理场性质。我们建立了半离散公式的稳定性分析和最优hp误差估计。通过综合数值实验验证了理论收敛速度,证明了该方法在各种测试用例中的准确性和鲁棒性,包括波在具有混合粘弹性质的非均质介质中的传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信