Monte Carlo track-chemistry simulations of fast neutron radiolysis in supercritical water at 400–600 °C and 25 MPa

IF 2.1 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
Md Shakhawat Hossen Bhuiyan, Jintana Meesungnoen, Abida Sultana, Jean-Paul Jay-Gerin
{"title":"Monte Carlo track-chemistry simulations of fast neutron radiolysis in supercritical water at 400–600 °C and 25 MPa","authors":"Md Shakhawat Hossen Bhuiyan,&nbsp;Jintana Meesungnoen,&nbsp;Abida Sultana,&nbsp;Jean-Paul Jay-Gerin","doi":"10.1016/j.nucengdes.2025.114479","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the radiation chemistry and behavior of transient species in supercritical water-cooled reactors (SCWRs), including small modular variants (SCW-SMRs), is essential for evaluating corrosion risks. Operating beyond water’s critical point, these reactors encounter unique challenges as intense radiation alters coolant chemistry and threatens material integrity. Here, we employ Monte Carlo track-chemistry simulations to quantify the radiolytic yields (<em>G</em> values) of e<sup>−</sup><sub>aq</sub>, <strong><sup>•</sup></strong>OH, H<strong><sup>•</sup></strong>, H<sub>2</sub>, H<sub>2</sub>O<sub>2</sub>, H<sub>3</sub>O<sup>+</sup>, and OH<sup>−</sup> in SCWR and SCW-SMR coolants exposed to 2-MeV fast neutrons at 400–600 °C and 25 MPa. Calculations track the first three elastically scattered recoil protons, with initial energies of 1.264, 0.465, and 0.171 MeV, from ∼1 ps to 100 μs. The temporal profiles of our calculated yields resemble those reported for low-linear-energy-transfer (LET) radiation, such as <sup>60</sup>Co γ rays, fast electrons, or 300-MeV protons. However, under fast neutron irradiation, charge recombination between e<sup>−</sup><sub>aq</sub> and H<sub>3</sub>O<sup>+</sup> within spurs or tracks is markedly enhanced, reflecting the high-LET nature of neutrons. In the homogeneous chemical stage of radiolysis, simulations reveal a pronounced rise in <em>G</em>(<strong><sup>•</sup></strong>OH) and <em>G</em>(H<sub>2</sub>) alongside a reduction in <em>G</em>(H<strong><sup>•</sup></strong>). This behavior is driven by H<strong><sup>•</sup></strong> + H<sub>2</sub>O → <strong><sup>•</sup></strong>OH + H<sub>2</sub>, a key pathway for H<sub>2</sub> formation that may help mitigate net water radiolysis and reduce corrosion. Under supercritical conditions, the very low <em>G</em>(H<sub>2</sub>O<sub>2</sub>) indicates that H<sub>2</sub>O<sub>2</sub> likely contributes little to material oxidation. Furthermore, in situ H<sub>3</sub>O<sup>+</sup> formation by recoil-proton irradiation transiently acidifies native track regions, suggesting that this localized acidity could promote corrosion. Overall, these results provide critical insights into the radiolytic processes in SCWRs and SCW-SMRs, informing strategies for optimized water-chemistry control and enhanced material protection.</div></div>","PeriodicalId":19170,"journal":{"name":"Nuclear Engineering and Design","volume":"445 ","pages":"Article 114479"},"PeriodicalIF":2.1000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029549325006569","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the radiation chemistry and behavior of transient species in supercritical water-cooled reactors (SCWRs), including small modular variants (SCW-SMRs), is essential for evaluating corrosion risks. Operating beyond water’s critical point, these reactors encounter unique challenges as intense radiation alters coolant chemistry and threatens material integrity. Here, we employ Monte Carlo track-chemistry simulations to quantify the radiolytic yields (G values) of eaq, OH, H, H2, H2O2, H3O+, and OH in SCWR and SCW-SMR coolants exposed to 2-MeV fast neutrons at 400–600 °C and 25 MPa. Calculations track the first three elastically scattered recoil protons, with initial energies of 1.264, 0.465, and 0.171 MeV, from ∼1 ps to 100 μs. The temporal profiles of our calculated yields resemble those reported for low-linear-energy-transfer (LET) radiation, such as 60Co γ rays, fast electrons, or 300-MeV protons. However, under fast neutron irradiation, charge recombination between eaq and H3O+ within spurs or tracks is markedly enhanced, reflecting the high-LET nature of neutrons. In the homogeneous chemical stage of radiolysis, simulations reveal a pronounced rise in G(OH) and G(H2) alongside a reduction in G(H). This behavior is driven by H + H2O → OH + H2, a key pathway for H2 formation that may help mitigate net water radiolysis and reduce corrosion. Under supercritical conditions, the very low G(H2O2) indicates that H2O2 likely contributes little to material oxidation. Furthermore, in situ H3O+ formation by recoil-proton irradiation transiently acidifies native track regions, suggesting that this localized acidity could promote corrosion. Overall, these results provide critical insights into the radiolytic processes in SCWRs and SCW-SMRs, informing strategies for optimized water-chemistry control and enhanced material protection.
在400-600°C和25 MPa的超临界水中快中子辐射分解的蒙特卡罗轨迹化学模拟
了解超临界水冷堆(SCWRs)中瞬态物质的辐射化学和行为,包括小型模块化反应堆(SCW-SMRs),对于评估腐蚀风险至关重要。在水的临界点之外运行,这些反应堆遇到了独特的挑战,因为强烈的辐射会改变冷却剂的化学性质,并威胁到材料的完整性。本文采用蒙特卡罗轨迹化学模拟方法,量化了在400-600°C、25 MPa、2 mev快中子条件下,SCWR和SCW-SMR冷却剂中e - aq、•OH、H•、H2、H2O2、h30 +和OH -的辐射分解产率(G值)。计算跟踪了前三个弹性散射反冲质子,它们的初始能量分别为1.264、0.465和0.171 MeV,从~ 1 ps到100 μs。我们计算的产率的时间分布类似于报道的低线性能量转移(LET)辐射,如60Co γ射线,快速电子或300 mev质子。然而,在快中子辐照下,马刺或径迹内e−aq和h30o +之间的电荷复合明显增强,反映了中子的高let性质。在辐射溶解的均相化学阶段,模拟显示G(•OH)和G(H2)的显著增加,同时G(H•)的减少。这种行为是由H•+ H2O→•OH + H2驱动的,这是H2形成的关键途径,可能有助于减轻净水辐射分解和减少腐蚀。在超临界条件下,非常低的G(H2O2)表明H2O2对材料氧化的作用可能很小。此外,反冲质子辐照在原位形成的h30 +会短暂地使原生径迹区酸化,这表明这种局部酸性会促进腐蚀。总的来说,这些结果为SCWRs和scw - smr中的辐射分解过程提供了重要的见解,为优化水化学控制和增强材料保护提供了策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nuclear Engineering and Design
Nuclear Engineering and Design 工程技术-核科学技术
CiteScore
3.40
自引率
11.80%
发文量
377
审稿时长
5 months
期刊介绍: Nuclear Engineering and Design covers the wide range of disciplines involved in the engineering, design, safety and construction of nuclear fission reactors. The Editors welcome papers both on applied and innovative aspects and developments in nuclear science and technology. Fundamentals of Reactor Design include: • Thermal-Hydraulics and Core Physics • Safety Analysis, Risk Assessment (PSA) • Structural and Mechanical Engineering • Materials Science • Fuel Behavior and Design • Structural Plant Design • Engineering of Reactor Components • Experiments Aspects beyond fundamentals of Reactor Design covered: • Accident Mitigation Measures • Reactor Control Systems • Licensing Issues • Safeguard Engineering • Economy of Plants • Reprocessing / Waste Disposal • Applications of Nuclear Energy • Maintenance • Decommissioning Papers on new reactor ideas and developments (Generation IV reactors) such as inherently safe modular HTRs, High Performance LWRs/HWRs and LMFBs/GFR will be considered; Actinide Burners, Accelerator Driven Systems, Energy Amplifiers and other special designs of power and research reactors and their applications are also encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信