AI-predictive vaccine stability: a systems biology framework to modernize regulatory testing and cold chain equity

IF 4.3
Sinethemba H. Yakobi, Uchechukwu U. Nwodo
{"title":"AI-predictive vaccine stability: a systems biology framework to modernize regulatory testing and cold chain equity","authors":"Sinethemba H. Yakobi,&nbsp;Uchechukwu U. Nwodo","doi":"10.1016/j.iswa.2025.200584","DOIUrl":null,"url":null,"abstract":"<div><div>Vaccine instability contributes to the loss of up to 25 % of doses globally, a challenge intensified by the complexity of next-generation platforms such as mRNA–lipid nanoparticles (mRNA–LNPs), viral vectors, and protein subunits. Current regulatory frameworks (ICH Q5C, WHO TRS 1010) rely on static protocols that overlook platform-specific degradation mechanisms and real-world cold-chain variability. We introduce the Systems Biology–guided AI (SBg-AI) framework, a predictive stability platform integrating omics-derived biomarkers, real-time telemetry, and explainable machine learning. Leveraging recurrent and graph neural networks with Bayesian inference, SBg-AI forecasts degradation events with 89 % accuracy—validated in African and Southeast Asian supply chains. Federated learning ensures multi-manufacturer collaboration while preserving data privacy. In field trials, dynamic expiry predictions reduced mRNA vaccine wastage by 22 %. A phased regulatory roadmap supports transition from hybrid AI-empirical models (2024) to full AI-based stability determinations by 2030. By integrating mechanistic degradation science with real-time telemetry and regulatory-compliant AI, the SBg-AI framework transforms vaccine stability from retrospective batch testing to proactive, precision-guided assurance.</div></div>","PeriodicalId":100684,"journal":{"name":"Intelligent Systems with Applications","volume":"28 ","pages":"Article 200584"},"PeriodicalIF":4.3000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667305325001103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Vaccine instability contributes to the loss of up to 25 % of doses globally, a challenge intensified by the complexity of next-generation platforms such as mRNA–lipid nanoparticles (mRNA–LNPs), viral vectors, and protein subunits. Current regulatory frameworks (ICH Q5C, WHO TRS 1010) rely on static protocols that overlook platform-specific degradation mechanisms and real-world cold-chain variability. We introduce the Systems Biology–guided AI (SBg-AI) framework, a predictive stability platform integrating omics-derived biomarkers, real-time telemetry, and explainable machine learning. Leveraging recurrent and graph neural networks with Bayesian inference, SBg-AI forecasts degradation events with 89 % accuracy—validated in African and Southeast Asian supply chains. Federated learning ensures multi-manufacturer collaboration while preserving data privacy. In field trials, dynamic expiry predictions reduced mRNA vaccine wastage by 22 %. A phased regulatory roadmap supports transition from hybrid AI-empirical models (2024) to full AI-based stability determinations by 2030. By integrating mechanistic degradation science with real-time telemetry and regulatory-compliant AI, the SBg-AI framework transforms vaccine stability from retrospective batch testing to proactive, precision-guided assurance.
人工智能预测疫苗稳定性:实现监管测试和冷链公平现代化的系统生物学框架
疫苗的不稳定性导致全球高达25%的剂量损失,下一代平台(如mrna -脂质纳米颗粒(mRNA-LNPs))、病毒载体和蛋白质亚基)的复杂性加剧了这一挑战。目前的监管框架(ICH Q5C, WHO TRS 1010)依赖于静态协议,忽略了平台特定的降解机制和现实世界的冷链可变性。我们介绍了系统生物学引导的人工智能(SBg-AI)框架,这是一个集成了组学衍生生物标志物、实时遥测和可解释机器学习的预测稳定性平台。利用贝叶斯推理的循环神经网络和图神经网络,SBg-AI预测退化事件的准确率为89%,在非洲和东南亚的供应链中得到了验证。联邦学习确保多制造商协作,同时保护数据隐私。在田间试验中,动态过期预测使mRNA疫苗的浪费减少了22%。分阶段的监管路线图支持从混合人工智能经验模型(2024年)过渡到2030年完全基于人工智能的稳定性确定。通过将机械降解科学与实时遥测和符合法规的人工智能相结合,SBg-AI框架将疫苗稳定性从回顾性批量检测转变为主动、精确指导的保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信