Liver cirrhosis prediction: The employment of the machine learning-based approaches

IF 4.3
Genjuan Ma, Yan Li
{"title":"Liver cirrhosis prediction: The employment of the machine learning-based approaches","authors":"Genjuan Ma,&nbsp;Yan Li","doi":"10.1016/j.iswa.2025.200573","DOIUrl":null,"url":null,"abstract":"<div><div>Early detection of liver cirrhosis remains problematic due to its asymptomatic onset and the inherent class imbalance in clinical data. This study conducts a comprehensive evaluation of machine learning models for predicting cirrhosis stages, with a focus on addressing these challenges. An approach employing Quadratic Discriminant Analysis (QDA) is benchmarked against seven other models, including powerful ensembles like Stacking and HistGradientBoosting, on a clinical dataset. Methodologies such as SMOTE oversampling, stratified data splitting, and class-specific covariance estimation were implemented to manage data complexity. The results demonstrate that a Stacking ensemble achieves the highest overall predictive performance with a micro-AUC of 0.80. The proposed QDA method also proves to be a highly effective and competitive model, achieving a robust AUC of 0.76 and outperforming several specialized imbalance-learning algorithms. Crucially, QDA offers this strong performance with exceptional computational efficiency. These findings show that while complex ensembles can yield top-tier accuracy, QDA’s capacity to model non-linear feature associations makes it a powerful and practical choice for the diagnosis of cirrhosis.</div></div>","PeriodicalId":100684,"journal":{"name":"Intelligent Systems with Applications","volume":"28 ","pages":"Article 200573"},"PeriodicalIF":4.3000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667305325000997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Early detection of liver cirrhosis remains problematic due to its asymptomatic onset and the inherent class imbalance in clinical data. This study conducts a comprehensive evaluation of machine learning models for predicting cirrhosis stages, with a focus on addressing these challenges. An approach employing Quadratic Discriminant Analysis (QDA) is benchmarked against seven other models, including powerful ensembles like Stacking and HistGradientBoosting, on a clinical dataset. Methodologies such as SMOTE oversampling, stratified data splitting, and class-specific covariance estimation were implemented to manage data complexity. The results demonstrate that a Stacking ensemble achieves the highest overall predictive performance with a micro-AUC of 0.80. The proposed QDA method also proves to be a highly effective and competitive model, achieving a robust AUC of 0.76 and outperforming several specialized imbalance-learning algorithms. Crucially, QDA offers this strong performance with exceptional computational efficiency. These findings show that while complex ensembles can yield top-tier accuracy, QDA’s capacity to model non-linear feature associations makes it a powerful and practical choice for the diagnosis of cirrhosis.
肝硬化预测:基于机器学习方法的应用
由于肝硬化的发病无症状,以及临床资料固有的分类不平衡,肝硬化的早期检测一直存在问题。本研究对预测肝硬化阶段的机器学习模型进行了全面评估,重点是解决这些挑战。在临床数据集上,采用二次判别分析(QDA)的方法与其他七个模型进行了基准测试,包括强大的集成,如Stacking和HistGradientBoosting。采用SMOTE过采样、分层数据分割和特定类别协方差估计等方法来管理数据复杂性。结果表明,在微auc为0.80的情况下,堆叠集成实现了最高的整体预测性能。所提出的QDA方法也被证明是一个非常有效和有竞争力的模型,实现了0.76的鲁棒AUC,并且优于几种专门的不平衡学习算法。至关重要的是,QDA以卓越的计算效率提供了这种强大的性能。这些发现表明,虽然复杂的集合可以产生顶级的准确性,但QDA对非线性特征关联的建模能力使其成为肝硬化诊断的一个强大而实用的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信