The polytopal composite element method for finite strain hyperelastic problems

IF 3.5 3区 工程技术 Q1 MATHEMATICS, APPLIED
Y. Li , B.W. Wang , Z.Q. Feng
{"title":"The polytopal composite element method for finite strain hyperelastic problems","authors":"Y. Li ,&nbsp;B.W. Wang ,&nbsp;Z.Q. Feng","doi":"10.1016/j.finel.2025.104436","DOIUrl":null,"url":null,"abstract":"<div><div>Polygonal elements have emerged as a cutting-edge discretization paradigm in computational solid mechanics, demonstrating significant potential for linear elasticity analyses. This work pioneers a robust computational framework extending polytopal composite elements to finite-strain hyperelasticity. The key idea by constructing a polynomial projection using least squares approximation for linear-compatible strain fields, followed by extending the derived linear operator to large deformation cases involving nonlinear strain. The computational framework of this method is fundamentally consistent with finite elements, allowing it to adapt and extend to various nonlinear problems. Through several numerical investigation we show that this approach maintains the excellent accuracy, convergence and stability, and is potentially offering new insights and references for polygonal elements in future nonlinear problems.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"252 ","pages":"Article 104436"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X25001258","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Polygonal elements have emerged as a cutting-edge discretization paradigm in computational solid mechanics, demonstrating significant potential for linear elasticity analyses. This work pioneers a robust computational framework extending polytopal composite elements to finite-strain hyperelasticity. The key idea by constructing a polynomial projection using least squares approximation for linear-compatible strain fields, followed by extending the derived linear operator to large deformation cases involving nonlinear strain. The computational framework of this method is fundamentally consistent with finite elements, allowing it to adapt and extend to various nonlinear problems. Through several numerical investigation we show that this approach maintains the excellent accuracy, convergence and stability, and is potentially offering new insights and references for polygonal elements in future nonlinear problems.
有限应变超弹性问题的多面体复合元法
在计算固体力学中,多边形单元已经成为一种前沿的离散化范式,在线性弹性分析中显示出巨大的潜力。这项工作开创了一个强大的计算框架,将多面体复合元素扩展到有限应变超弹性。关键思想是利用最小二乘近似构造线性相容应变场的多项式投影,然后将导出的线性算子推广到涉及非线性应变的大变形情况。该方法的计算框架与有限元基本一致,使其能够适应和扩展到各种非线性问题。数值研究表明,该方法保持了良好的精度、收敛性和稳定性,为今后求解多边形单元的非线性问题提供了新的思路和参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
3.20%
发文量
92
审稿时长
27 days
期刊介绍: The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信