Advanced computational framework for fragility analysis of elevated steel tanks using hybrid and ensemble machine learning techniques

IF 4.3 2区 工程技术 Q1 ENGINEERING, CIVIL
Mohammad Reza Akbarzadeh , Vahid Jahangiri , Babak Naeim , Ali Asgari
{"title":"Advanced computational framework for fragility analysis of elevated steel tanks using hybrid and ensemble machine learning techniques","authors":"Mohammad Reza Akbarzadeh ,&nbsp;Vahid Jahangiri ,&nbsp;Babak Naeim ,&nbsp;Ali Asgari","doi":"10.1016/j.istruc.2025.110205","DOIUrl":null,"url":null,"abstract":"<div><div>This research examines the elevated steel tanks’ seismic fragility with emphasis on the impact of significant structural and ground motion characteristics on the parameters of the fragility curve. Focusing on prediction accuracy by sophisticated machine learning techniques and the underlying variable importance in driving the fragility response, the research introduces meaningful insights toward seismic design and retrofitting. The fragility curve is developed for several Engineering Demand Parameters (EDPs) containing Base Shear <span><math><mrow><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>)</mo></mrow></math></span>, Overturning Moment <span><math><mrow><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>)</mo></mrow></math></span>, Tower Displacement <span><math><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>)</mo></mrow></math></span>, vertical liquid surface displacement <span><math><mrow><mo>(</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>v</mi></mrow></msub><mo>)</mo></mrow></math></span>, meridional tank wall stress (Sigma), Elephant Foot Buckling <span><math><mrow><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>pb</mi></mrow></msub><mo>)</mo></mrow></math></span>, and base isolation displacement <span><math><mrow><mo>(</mo><msub><mrow><mi>U</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>)</mo></mrow></math></span>. A detailed sensitivity analysis is conducted using the Fourier Amplitude Spectrum Technique (FAST) to assess the impact of input characteristics on the median <span><math><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></math></span> and dispersion <span><math><mrow><mo>(</mo><mi>β</mi><mo>)</mo></mrow></math></span> parameters of the fragility curve. For tanks that are not isolated, geometric characteristics like slenderness (S) and liquid height (H) play greater roles than material characteristics like the density of steel <span><math><mrow><mo>(</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>steel</mi></mrow></msub><mo>)</mo></mrow></math></span>, emphasizing the structural superiority of geometry to material weight in seismic behavior. Likewise, environmental and ground motion inputs like peak ground acceleration (PGA) and site conditions (Field) show different types and magnitudes of impacts across the EDPs. For isolated tanks, sensitivity patterns change, with the damping ratio <span><math><mrow><mfenced><mrow><msub><mrow><mi>ξ</mi></mrow><mrow><mi>b</mi></mrow></msub></mrow></mfenced></mrow></math></span>, isolation base period <span><math><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>)</mo></mrow></math></span>, and viscous behavior (ν), demonstrating significant impact on some, like <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>b</mi></mrow></msub></math></span> and Sigma, while others like H and R show minimal impact. These results highlight the variable-specific nature of fragility behavior, providing a granular understanding of the design characteristics that play crucial roles in determining seismic vulnerability. Results enhance model interpretability and provide actionable insights that support the engineer's prioritization of the most impactful design parameters. The feature-based understanding enhances the synergy between data-driven modeling and domain-specific knowledge, leading to performance-based design of elevated steel tanks.</div></div>","PeriodicalId":48642,"journal":{"name":"Structures","volume":"81 ","pages":"Article 110205"},"PeriodicalIF":4.3000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235201242502020X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

This research examines the elevated steel tanks’ seismic fragility with emphasis on the impact of significant structural and ground motion characteristics on the parameters of the fragility curve. Focusing on prediction accuracy by sophisticated machine learning techniques and the underlying variable importance in driving the fragility response, the research introduces meaningful insights toward seismic design and retrofitting. The fragility curve is developed for several Engineering Demand Parameters (EDPs) containing Base Shear (Vb), Overturning Moment (Mb), Tower Displacement (Xs), vertical liquid surface displacement (dv), meridional tank wall stress (Sigma), Elephant Foot Buckling (fpb), and base isolation displacement (Ub). A detailed sensitivity analysis is conducted using the Fourier Amplitude Spectrum Technique (FAST) to assess the impact of input characteristics on the median (θ) and dispersion (β) parameters of the fragility curve. For tanks that are not isolated, geometric characteristics like slenderness (S) and liquid height (H) play greater roles than material characteristics like the density of steel (ρsteel), emphasizing the structural superiority of geometry to material weight in seismic behavior. Likewise, environmental and ground motion inputs like peak ground acceleration (PGA) and site conditions (Field) show different types and magnitudes of impacts across the EDPs. For isolated tanks, sensitivity patterns change, with the damping ratio ξb, isolation base period (Tb), and viscous behavior (ν), demonstrating significant impact on some, like Ub and Sigma, while others like H and R show minimal impact. These results highlight the variable-specific nature of fragility behavior, providing a granular understanding of the design characteristics that play crucial roles in determining seismic vulnerability. Results enhance model interpretability and provide actionable insights that support the engineer's prioritization of the most impactful design parameters. The feature-based understanding enhances the synergy between data-driven modeling and domain-specific knowledge, leading to performance-based design of elevated steel tanks.
使用混合和集成机器学习技术的高架钢罐易损性分析的先进计算框架
本文研究了高架钢储罐的地震易损性,重点研究了重要的结构和地面运动特征对易损性曲线参数的影响。该研究关注复杂机器学习技术的预测准确性以及驱动脆弱性响应的潜在变量重要性,为抗震设计和改造提供了有意义的见解。建立了几个工程需求参数(EDPs)的易损性曲线,这些参数包括基座剪切(Vb)、倾覆力矩(Mb)、塔位移(Xs)、垂直液体表面位移(dv)、经向罐壁应力(Sigma)、象足屈曲(fpb)和基座隔离位移(Ub)。利用傅立叶振幅谱技术(FAST)进行了详细的灵敏度分析,以评估输入特性对脆性曲线的中位数(θ)和离散度(β)参数的影响。对于非隔离的储罐,细长细度(S)和液体高度(H)等几何特性比钢密度(ρsteel)等材料特性发挥更大的作用,强调了几何结构在抗震性能方面优于材料重量的结构优势。同样,环境和地面运动输入,如峰值地面加速度(PGA)和场地条件(Field),显示了不同类型和程度的影响。对于隔离罐,灵敏度模式随着阻尼比ξb、隔离基期(Tb)和粘性行为(ν)的变化而变化,对Ub和Sigma等部分影响显著,而H和R等部分影响最小。这些结果突出了易损性行为的可变特性,为确定地震易损性起关键作用的设计特征提供了详细的理解。结果增强了模型的可解释性,并提供了可操作的见解,支持工程师对最具影响力的设计参数进行优先级排序。基于特征的理解增强了数据驱动建模和特定领域知识之间的协同作用,从而实现了基于性能的高架钢罐设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Structures
Structures Engineering-Architecture
CiteScore
5.70
自引率
17.10%
发文量
1187
期刊介绍: Structures aims to publish internationally-leading research across the full breadth of structural engineering. Papers for Structures are particularly welcome in which high-quality research will benefit from wide readership of academics and practitioners such that not only high citation rates but also tangible industrial-related pathways to impact are achieved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信