The competition between wave turbulence and coherent structures

IF 2.9 3区 数学 Q1 MATHEMATICS, APPLIED
Benno Rumpf , Alan C. Newell
{"title":"The competition between wave turbulence and coherent structures","authors":"Benno Rumpf ,&nbsp;Alan C. Newell","doi":"10.1016/j.physd.2025.134923","DOIUrl":null,"url":null,"abstract":"<div><div>Wave turbulence of weakly nonlinear dispersive waves is a disordered state in which energy or other conserved quantities are transferred from sources in wavenumber space (the driving range) to sinks (the dissipation range). The theory of wave turbulence provides an analytic derivation of all statistical quantities (most notably the Kolmogorov–Zakharov spectrum) from the underlying equations of motion. A competing and radically different turbulent process with a significant impact on the statistical properties is the formation of coherent structures. Under what conditions can we observe purely weak wave turbulence, and when is it superseded by coherent structures? We study this problem for an influential model of one-dimensional turbulent dynamics, the Majda–McLaughlin–Tabak equation. The formation of narrow radiating solitary waves (pulses) leads to spectra that are steeper than the Kolmogorov–Zakharov spectra. However, for sufficiently large box sizes, we find that wave turbulence prevails within a broad range of four orders of magnitude of the driving force.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"483 ","pages":"Article 134923"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925004002","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Wave turbulence of weakly nonlinear dispersive waves is a disordered state in which energy or other conserved quantities are transferred from sources in wavenumber space (the driving range) to sinks (the dissipation range). The theory of wave turbulence provides an analytic derivation of all statistical quantities (most notably the Kolmogorov–Zakharov spectrum) from the underlying equations of motion. A competing and radically different turbulent process with a significant impact on the statistical properties is the formation of coherent structures. Under what conditions can we observe purely weak wave turbulence, and when is it superseded by coherent structures? We study this problem for an influential model of one-dimensional turbulent dynamics, the Majda–McLaughlin–Tabak equation. The formation of narrow radiating solitary waves (pulses) leads to spectra that are steeper than the Kolmogorov–Zakharov spectra. However, for sufficiently large box sizes, we find that wave turbulence prevails within a broad range of four orders of magnitude of the driving force.
波浪湍流与相干结构之间的竞争
弱非线性色散波的波动湍流是一种能量或其他守恒量从波数空间中的源(驱动范围)转移到汇(耗散范围)的无序状态。波浪湍流理论提供了从基本运动方程推导出所有统计量(最显著的是Kolmogorov-Zakharov谱)的解析推导。一个对统计性质有重大影响的竞争和根本不同的湍流过程是相干结构的形成。在什么条件下我们可以观察到纯粹的弱波湍流,什么时候它被相干结构所取代?我们研究了一个有影响的一维湍流动力学模型,Majda-McLaughlin-Tabak方程。窄辐射孤立波(脉冲)的形成导致谱比柯尔莫哥洛夫-扎哈罗夫谱更陡峭。然而,对于足够大的箱形尺寸,我们发现波浪湍流在驱动力的四个数量级的广泛范围内盛行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信