On a family of Poisson brackets on glncompatible with the Sklyanin bracket

IF 2.9 3区 数学 Q1 MATHEMATICS, APPLIED
Vladimir V. Sokolov , Dmitry V. Talalaev
{"title":"On a family of Poisson brackets on glncompatible with the Sklyanin bracket","authors":"Vladimir V. Sokolov ,&nbsp;Dmitry V. Talalaev","doi":"10.1016/j.physd.2025.134943","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study a family of compatible quadratic Poisson brackets on <span><math><msub><mrow><mi>gl</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, generalizing the Sklyanin one. For any of the brackets in the family, the argument shift determines the compatible linear bracket. The main interest for us is the use of the bi-Hamiltonian formalism for some pencils from this family, as a method for constructing involutive subalgebras for a linear bracket starting by the center of the quadratic bracket. We give some interesting examples of families of this type. We construct the centers of the corresponding quadratic brackets using the antidiagonal principal minors of the Lax matrix. Special attention should be paid to the condition of the log-canonicity of the brackets of these minors with all the generators of the Poisson algebra of the family under consideration. A similar property arises in the context of Poisson structures consistent with cluster transformations.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"483 ","pages":"Article 134943"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925004208","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study a family of compatible quadratic Poisson brackets on gln, generalizing the Sklyanin one. For any of the brackets in the family, the argument shift determines the compatible linear bracket. The main interest for us is the use of the bi-Hamiltonian formalism for some pencils from this family, as a method for constructing involutive subalgebras for a linear bracket starting by the center of the quadratic bracket. We give some interesting examples of families of this type. We construct the centers of the corresponding quadratic brackets using the antidiagonal principal minors of the Lax matrix. Special attention should be paid to the condition of the log-canonicity of the brackets of these minors with all the generators of the Poisson algebra of the family under consideration. A similar property arises in the context of Poisson structures consistent with cluster transformations.
关于与Sklyanin括号不相容的泊松括号族
本文研究了gln上的相容二次泊松括号族,推广了Sklyanin括号族。对于该系列中的任何括号,参数shift决定兼容的线性括号。对我们来说,主要的兴趣是利用双哈密顿的形式,对于这个族中的一些铅笔,作为一种构造线性括号的对合子代数的方法,从二次括号的中心开始。我们举一些这种家庭的有趣例子。利用Lax矩阵的反对角主次矩阵构造相应的二次方括号的中心。在考虑族的泊松代数的所有生成元的情况下,应特别注意这些子式括号的对数正则性的条件。在与簇变换相一致的泊松结构中也出现了类似的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信